Combustible Gas Issues in Nuclear Safety Panel Discussion

American Nuclear Society 2014 Winter Meeting Anaheim, CA 11 November 2014

©2014 Baker Engineering and Risk Consultants, Inc.

- Worked at Savannah River Site ('90-'99)
- Focus on flammability and explosion issues
- Consulted for other DOE sites, including Hanford issues (expert panels)
- At BakerRisk since '99
 - Focus on commercial clients
 - Accident investigation and explosion testing
- Highlight several differences between DOE & commercial approaches for vapor cloud explosions

- Vapor cloud explosion (VCE) blast load modeling
 - Simplified methods
 - Computational fluid dynamics (CFD)
- Deflagration-to-detonation transition (DDT) in external VCEs
 - Testing and predictive methods
 - Detonation wave propagation and consequences
- Consequence vs. probabilistic methods
- Industry guidance (US)

- Simplified VCE blast load modeling
 - Based on blast load curves (constant flame speed, hemispherical gas cloud)
 - Only congested/confined regions contribute
 - Main examples are Baker-Strehlow-Tang (BST) and TNO Multi-energy Method (TNO MEM)

Advantages

- Relatively easy to apply
- Can provide acceptable accuracy, particularly outside congested volume (e.g., control rooms)
- Can integrate into consequence assessment codes (dispersion, blast, building damage)

VCE Blast Load Modeling (2 of 7)

Disadvantages

- Assignment of flame speed subject to uncertainty
 - Need to tie back to relevant test data
 - Congestion and confinement levels
 - Gas mixture reactivity
 - Scale
- Treatment of regions with multiple flame speeds
 - Actual plant geometries have variable levels of congestion and/or confinement
- Criteria as to whether adjacent congested volumes constitute separate explosions

VCE Blast Load Modeling (3 of 7)

 Published BST flame speed table, scaled for typical processing plant dimensions

Confinement	Reactivity	Congestion		
		Low	Medium	High
2-D	High	0.59	DDT	DDT
	Medium	0.47	0.66	1.6
	Low	0.079	0.47	0.66
2.5-D	High	0.47	DDT	DDT
	Medium	0.29	0.55	1.0
	Low	0.053	0.35	0.50
3-D	High	0.36	DDT	DDT
	Medium	0.11	0.44	0.50
	Low	0.026	0.23	0.34

VCE Blast Load Modeling (5 of 7)

- Typical VCE test to derive flame speed
- Test for Explosion Research Cooperative (ERC)

- Computational fluid dynamics (CFD)
 - FLACS is most widely accepted commercial code (GexCon)
 - Others available in past & currently under development

Advantages

- More sophisticated approach
- Can treat actual congestion and confinement present rather than approximating to "typical" values over large volumes
- Directly treat flame acceleration / deceleration

Disadvantages

 Commercial codes capable of treating typical process units utilize large computational cell size (e.g., 1 meter) and utilize sub-grid models

Large dimensions & multiple scenarios

 Uncertainty when applying to geometries and conditions not part of validation data base

Large flame travel distances can be problematic

- Requires detailed solid model of congested volume (e.g., process unit)
 - All solid objects (> roughly one inch)

- DDT in external VCE can significantly increase blast load (very relevant for H₂)
 - Outside congested volume, significant only if cloud extends beyond congested volume
 - Deflagration > flash fire outside congested vol.
 - Detonation > propagates outside congested vol.
- Testing
 - Attempt to define conditions likely to trigger a DDT (congestion, confinement, reactivity)
 - Have shown would be expected with high reactivity fuels under relevant conditions

External VCE DDT (2 of 5)

Lean (22%) hydrogen at medium congestion level without confinement (internal research)

External VCE DDT (3 of 5)

- Detonation propagation (normal speed video)
- Ethylene, medium cong., no conf. (internal research)

External VCE DDT (4 of 5)

- Detonation propagation (high speed video)
- Ethylene, medium cong., no conf. (internal research)

External VCE DDT (5 of 5)

Predictive methods

- Simplified methods
 - Definition of congestion / confinement / reactivity level combinations likely to trigger a DDT
- CFD methods (commercial codes)
 - Definition of key parameters where exceeding critical value indicates DDT likely
 - Pressure gradient
 - Flame speed
- Area of active development and debate within industry due to several recent accidental VCEs which may have involved DDT

Few QRAs for on-shore plants a decade ago

- Availability of efficient tools and cost were main issues
- Consequence-based studies used relatively small release sizes so that predicted blast loads were tolerable (i.e., could be accepted or mitigated)
- QRAs gained acceptance for off-shore facilities

QRAs now being routinely performed on-shore

- Efficient and cost-effective tools
- Push to use much larger release sizes in consequence studies yields significantly higher blast loads
- Consideration of DDT can yield much higher blast loads
- Pure consequence results may be difficult to mitigate

- Relative to VCE blast load, QRAs may consider:
 - Release scenario (release frequency, size & duration)
 - Meteorological conditions (class, wind speed & direction)
 - Ignition (conditional probability & location)
 - Explosion severity (e.g., likelihood of DDT, likelihood of propagation into cloud external to congested volume)

• QRAs can be used to:

- Prioritize prevention and mitigation actions
 - Significant where consequence-based study identifies numerous such actions required
- Ensure selected actions provide acceptable level of risk reduction (i.e., risk reduced to tolerable level)

Industry Guidance (1 of 5)

- AIChE CCPS Guideline
- API RP 752 for siting permanent buildings
 API RP for general building siting
- API RP 753 for siting portable buildings
 - Developed following BP Texas City incident due to damage to light wood trailers (temporary buildings)
 - Resulted in fairly widespread use of blast resistant modular buildings (BRMs)
- API RP 756 for siting tents (2014)
 - Tents used as alternative to temporary portable buildings, support turn around activities, etc.
 - Example tests shown in following slides

Industry Guidance (2 of 5)

- Deflagration Load Generator (DLG) test rig
- 48' x 24' x 12', vertical pipe congestion $(3\% C_3H_8)$

Industry Guidance (3 of 5)

Tent blast load response test (1.4 psi, 22 ms)

Industry Guidance (4 of 5)

- National Fire Protection Explosion (NFPA) Explosion Protection Committee
 - 69: Explosion prevention
 - 68: Deflagration venting
 - Accounts for congestion within vented enclosure
 - See example video next slide
 - 67: Protection for piping systems
 - First issued in 2013
- NFPA standards on combustible dust

Industry Guidance (5 of 5)

- Vented deflagration testing with obstacles (ERC test)
- This (and similar) tests now factored into NFPA 68 vented deflagration correlation

