Combustible Gas and Nuclear Safety – Selected Issues

Joe Shepherd
Aerospace and Mechanical Engineering
Caltech, Pasadena CA
jeshep@caltech.edu

Hydrogen and Combustible Gas Issues and Nuclear Facility Safety Panel Session
ANS Winter Conference 2014, Anaheim, CA
Tuesday November 11, 2014

Research Topics

- Composition and distribution of flammable atmospheres
- Ignition sources and likelihood of ignition in passive systems
- Effectiveness of deliberate ignition or recombination?
- What is the most severe explosion hazard possible? Is detonation possible?
- Evaluation of structural loading and thermal response of equipment

Selected Issues For Today

- Structural margin and integrity following internal explosions
 - Containers
 - Processing facilities
- Dispersion and multiphase dynamics
- Combustible gas generation and mitigation during severe accidents in NPP
 - Fukushima follow up

Explosion Hazards in Containers

Explosion Hazards in Waste Storage and Treatment Facilities

Hanford WA Pu-239 from 1945 to 1989
2 x 108 ℓ radioactive waste in leaking tanks
WTP convert to glass, 36 tonne/day in 2014
Radiolysis and chemical reaction create H2,
N2O, O2.

Explosion Scenarios

Slow Explosion or Deflagration

Fast explosion or Detonation

Detonation reflecting to Create shock wave

Deflagration-to-Detonation Transition followed by reflection (DDT/Pressure Piling)

Deflagration (slow) are quasi-static

Detonations are pressure waves

Plastic Deformation Validation

Transition to Detonation

Plastic Deformation and Rupture

 What are the rupture mechanisms and thresholds for detonation loading inside pipings and containment structures?

Applications:

Disposal/Destruct systems

Explosive Effects
Mitigation

Incident Analysis

Explosion Over Liquid Surface

Teodorcyzk and Shepherd 1994-5

DDT over water layer

11/11/2014

ANS Winter Meeting

Explosion Hazards In Nuclear Power

NY Times – DigitalGlobe

Common Lessons

- DC power failure and lack of backup crippled response
 - No status, no control, limited communications
- Interaction of logic control circuits with power failures (AC and DC) leading unanticipated and unknown valve status
- Inability to transition to ad hoc cooling in a timely fashion.
 - Difficulty in securing ad hoc DC and air power for valves
 - Lack of pre-placed resources and planning for ad hoc responses
 - Limited access to reactor buildings, multiunit competition
 - Uncertain flow paths for cooling water
 - Low pressure of ad hoc injection (fire truck pumps)

"Coordination of depressurization and low-pressure water injection proved impossible to accomplish under the conditions at the plant following the tsunami..."

Figure 3.9 (TEPCO)

Hydrogen Explosions

The hydrogen explosions in Units 1, 3, and 4 had a significant impact on the accident response

- Injured workers
- Destroyed equipment, water line, power cables
- Prompted evacuations
- Explosions were unexpected by operators and Emergency Response Center staff
- Explosions should not have come as a surprise

Hydrogen explosions were a "game changer" in responding to the accident.

Deflagrations Easily Fail Secondary Containment in Mark I BWR

S. Greene CONF-8806153-1 ORNL

Containment Size

- Mark I primary is 300,000 ft³
- Smallest of all designs
- Quickly reaches high H2 concentration if core overheats
- All Mark I reactors
 operate with inert N2
 filled primary systems

LWR H2 Manual NUREG/CR-2726

Observations

- Fuel pin overheating and H2 production occurs very rapidly (~1 hr) once pins are no longer covered by water
 - Deflagration and FP release with 24 hr of SBO predicted (SAND2007-7697)
- Volume of refueling bay (~10⁶ ft³ or 2.8 x10⁴ m³) is 3 X larger than primary containment but pressure is nearly atmospheric.
- Inventory of Zr initially in each reactor, H2 assuming 100% reaction and expansion to NTP.

Unit	ZR (tonne)	H2 (tonne)	H2 (m³)
1	44	2	23804
2 or 3	60	3	32612

Where Can the H2 go?

Damaged core releases fission products, generates hydrogen

Vent Primary Containment to Reduce Pressure

Vent primary containment. Some gas enters reactor building. Exact path unclear but H2 fills refueling bay region, mixes with air and explodes.

11/11/2014 24

Gas composition in 1F1 Building

Sandia 2012-6173 MELCOR simulations

Gas Composition in 1F3

Origin of flammable gas for explosion	Timing (hours)	Gas transport from containment to reactor building	
	35 – 44	Trapped in piping for 24+ hours (SGTS system), leaks to building	
In-vessel H ₂	57 – 68	Ruptured S/C vent, S/C vent flows to building [Simulation-1 and simulation-2] S/C penetration leakage, S/C vent flows to environment [Simulation-3 and simulation-4]	
Ex-vessel H ₂ and CO	60 – 68	Indeterminate: SGTS leak, vent leak, penetration leakage	

Sandia MELCOR simulations 2012 ANS meeting

H2 Explosion in 1F4

March 17, 2011 Tepco image of damage to Unit 4.

Multi-unit interactions

1F3-1F4 Stack Connection role in H2 entering 1F4

1 Unit 4
Stack
Unit 3

Tepco May 16

Venting and Intrinsic Safety

Hydrogen Issues Arising from 1F Events

- What is optimum strategy for depressurization and low pressure injection with improvised or ad hoc measures?
- Is mitigation needed in BWR reactor buildings?
- Will igniters and PARS work under SBO severe accident conditions?
- Are multi-unit interactions a generic safety issue?
- Will filtered vents be operable under SBO conditions?
- Forensics
 - What happened at 1F?
 - What type of explosions occurred?
 - What can we learn from damage and debris?
 - What are lessons learned for accident management and accident modeling