

Overview of Potential Improvements to DOE-STD-3014

Jacob P. Platfoot

Nuclear and Radiological Protection Division

Oak Ridge National Laboratory

February 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Publication ID: 137769

Prepared for the U.S. Department of Energy Office of Science

UT-Battelle, LLC under contract DE-AC05-00OR22725 for the U.S. DEPARTMENT OF ENERGY

Overview

- Structure of DOE-STD-3014
- Consequence Screening
- Frequency Screening
- Structural Screening
- Summary and Conclusions

Consequence Screening

- Methodology is provided in Section 7 (10 pages)
- Provides highly simplified approach
 - ARF*RF values
 - Atmospheric dispersion
- Section 1.3 identifies applicability as HC-1 or HC-2
 - What would motivate these facilities use this highly simplified approach?
- What purpose is this section serving for users of the Standard?
- Should the section be removed or updated?
 - If updated, how will it be maintained consistent with other documents (STD-3009, HDBK-3010, STD-5506, etc.)

Consequence Screening

- Key references of this section are not readily available
 - Two SAIC publications (95-1192 and 96-1193)
 - Screening nomographs for radiological and chemical hazards
 - Background information for development of source terms and atmospheric dispersion model for reference above.
 - Hyperlinks provided in reference section of standard are broken, leading to defunct page.

Frequency Screening

- Anecdotally, the most often used portion of the Standard.
- Based on a large volume of statistical information
 - Availability
 - Time sensitivity
 - Developments in analytical approach

The Four-Factor Formula

$$F = \sum N \cdot P \cdot f(x, y) \cdot A$$

- Where;
 - F = Est. annual aircraft impact frequency; [Crashes/Yr]
 - N = Est. annual no. of aircraft operation; [Ops/Yr]
 - P = Aircraft Crash Rate; [Crashes/Ops]
 - f(x,y) = Aircraft crash location conditional probability; [1/mi²]
 - A = Facility specific Effective Impact Area; [mi²]

Which of these are affected by updated statistics? All of them.

Frequency – N (operations/yr)

• ORNL efforts have focused on General Aviation

- Nationwide number of landings decreased by ~32% referenced against the Standard
 - Standard Ref. 5.2 Table 3.20 (1986-1993) 35,335,209 landings/yr
 - FAA Activity Summaries (2006-2014) 24,034,910 landings/yr
- No investigation into Commercial or Military ops
- FAA ATC database could allow localized, high resolution assessment of **all categories**
 - May be able to provide type-specific operations data
 - FAA relationship allows more up-to-date data
 - Activity surveys typically ~1 CY behind (CY2018 pub. Jan 2020)

Frequency – P (crashes/operation)

- NTSB data indicates potentially significant change.
 - Statistics below are accidents/100,000 flight hours
 - Need detailed analysis of data to establish actual effects on F
- Reduced op. no. likely driven by amateurs.
 - Could be driving reduced crash rates
- Commercial number not clear since most accidents do not involve an aircraft crash.
 - Last non-airport (Not takeoff or landing) crash in US was in 2000.

Category	Standard	NTSB 2017	Change
General Aviation	8.21	5.67	-31%
Air Taxi (Part 135)	1.36	1.53	+12%
Commercial (Part 121)	0.303	0.172	-57%

Overview of Potential Improvements to DOE-STD-3014 Publication ID: 137769

Frequency – f(x,y)

- Localization factor accounts for site location
- Previously evaluated using crash data (NP)
- Statistics expertise is needed to evaluate how this term should be handled.
 - How does localization of N affect f(x,y)?
 - Is a localization factor for P needed/permissible?

Frequency – Effective Area

- Combination of facility (building) and aircraft
- Aircraft terms based on statistics
 - Wingspan
 - Bill has done a lot with the FAA registry
 - Impact angle
 - Ostensibly based on NTSB accident reports (GA data)
 - Major contributor to effective area for all categories
 - Skid distance
 - Derived from impact angle and velocity and aircraft weight
 - Primarily of concern for commercial and military, small GA

Structural Screening

- If total impact frequency is >10⁻⁶/yr
 - Evaluate categories or subcategories of aircraft
 - If no potential affect on MAR, remove from frequency est.
- Select missiles and targets
 - Identify what type of aircraft at what speed and angle
 - Identify structure faces, material of construction, SSCs that could be impacted
- Two structural response evaluations
 - Local response can the aircraft penetrate or seriously damage the structure
 - Global response could the aircraft impact cause excessive deformation or collapse of the structure

Critical Missiles - Subcategorization

Dual fuselage, 385 foot wingspan, 6 turbofan engines, MTOW = 650 tons

 Discussion of methodology and results to subcategorize would add significant value to the STD

Critical Missiles - Selection Options

- Critical Missile selection uses kinetic energy to grade missiles – higher kinetic energy = higher hazard
- The STD offers two ways to select critical missiles
 - Both require OUO reference document (UCRL-ID-123577)
- Bounding Missile Identify a worst case missile
 - Highest kinetic energy (1/2 m^*v^2)
- Site-wide basis aircraft hazard analysis
 - Need aircraft activity distribution by type (make and model)
 - Approachable for airport operations, daunting for overflight
- A methodology that provides a moderate effort option could add value to the STD.

Critical Missiles – Aircraft Characteristics

- Sparse data in Data Development Document
- No guidance on selecting an aircraft weight
- No data provided on engine weights or dimensions
 - Data tables list type of powerplant and nominal horsepower
 - Harder to obtain than aircraft dimensions
- Data provided lends minimal aid
- Improved data tables or summary values could make the screening process more useful, save the detail for evaluation

Structural Screening & Evaluation

- Little difference between the activities of each
- Analysis is from first principles and fairly detailed
 - Evaluates specific impact locations
 - Considers MAR and safety SSCs in each area
- Gives no option to account for existing analyses (NPH)
 - Missiles due to high wind (similar to local response)
 - Structural collapse during seismic event (similar to global response)
- Local impact methodology only looks at reinforced concrete and steel.
 - Discussion of other materials of construction
- A true screening process would improve the STD OAK RIDGE National Laboratory

Summary

- Consequence Revisit the intended goals and uses of this section and integrate with established processes
- Frequency Update data and update techniques
 - Significant changes in aviation activity in last 20 years
 - Drastic improvement in the availability of data
 - Aircraft data lacks depth considering its importance
- Structural Grading in methodology, build database
 - Provide options between high conservatism and high detail
 - Integrate structural analysis from other events
 - Use modern data sources to simplify critical missile selection

Conclusions

- Significant opportunities for improvement exist in every major section of DOE-STD-3014
- Acting on these opportunities effectively requires a cross-functional team, likely from several labs
- ORNL has been investing in a few of these efforts, but the task is too large to tackle alone.
- An effective revision of DOE-STD-3014 should involve a team similar to the authorship team
 - ~30 members from 8 organizations

