

LAYER OF

After the Hazard Analysis: Semi-Quantitative Risk Analysis to Derive Controls Using Layer of Protection Analysis

Kelsey Forde CIH CSP CHMM Owner, Principal System Safety Engineer <u>klforde@parvaticonsulting.com</u> (505)967-8917 Timothy Stirrup REM ASP CHMM Principal System Safety Engineer tsstirrup@parvaticorp.com (505)980-3743

Parvati Consulting LLC ...a woman-owned small business... www.parvaticorp.com

ExxonMobil Refinery Explosion

ExxonMobil Refinery Explosion

Torrance, CA 2015

https://youtu.be/JplAKJrgyew

http://www.csb.gov/mobile/videos/animation-of-2015-explosion-at-exxonmobil-refinery-in-torrance-ca/

Discussion ExxonMobil Refinery Explosion

Controls

- Assignment of Values
- Hierarchy Analysis
- https://youtu.be/JplAKJrgyew

http://www.csb.gov/mobile/videos/animation-of-2015-explosion-at-exxonmobil-refinery-in-torrance-ca/

LAYER OF PROTECTION

ANALYSIS

DES MISK

Layer of Protection Analysis (LO

- LOPA History
- LOPA Defined
- LOPA Common Elements
- LOPA Use Motivating Factors
- LOPA Steps
- LOPA Limitations/Benefits
- LOPA References

LOPA History

- Origin with Company Specific Development
- Parallel Development of Safety Integrity Levels (SIL)
- Multiple Papers Published ~ 1997
- Center for Chemical Process Safety
 - Internal Conference ~ 1997
 - Workshop ~ 2000
 - LOPA Concept Book ~ 2001
 - "Redbook" Incorporation ~ 2008

LOPA Purpose

- Replace Quantitative Risk Assessment
- Determine if Sufficient Layers of Controls
- Use of LOPA as Semi Quantitative Hazard
 Evaluation Tool for Judging Risk of Accident
 Scenarios
- Risk Analysis Tool that Must be Applied Correctly

Layer of Protection Analysis Qualitative vs Quantitative

- Applied After Traditional Methods
 - Narrow Focus on Important Events
 - Derived Significant Controls

LOPA Defined

- Simplified Form of Risk Assessment
- Order of Magnitude Categories
 - Event Frequency
 - Consequence Severity
 - Likelihood of Failure of Independent Protection Layers (IPL)

 Builds On Qualitative Hazards Analysis ~ Semi Quantitative/Qualitative

Rule-Based Implementation

Common Elements

- Consequence Classification Method
 - Typically Company Specific
 - Use of Standard Consequence Table
 - Derived from Qualitative HE
- Numerical Risk Tolerance Criteria
 - ► Fatalities & Fire Frequencies
 - Required Number of IPL Credits
 - Maximum Frequency for Specified Categories
- Method of Developing Scenarios

Common Elements

- Rules for Controls as IPLs
- Default Frequency Data
 - Event Frequencies
 - Credits for IPLs
- Procedure for Calculation
- Procedure for
 Application/Acceptance

- Rules for Controls as IPLS
 - Independence
 - Functionality
 - Integrity
 - Reliability
 - Auditability
 - Access Security
 - Management of Change

LOPA Use

- Effectively Used Throughout Safety Life Cycle
- Preferred Use
 - Detailed Design Stages
 - Modifications to Designs
- Techniques Where Defining
 - Control Hierarchy
 - Control Requirements
- Use for Engineering/Administrative Controls

LOPA Use

LOPA is a Process to Evaluate Risk with Explicit Risk Tolerance for Specific (Higher) Consequences

Support Rationale "Risk Based" Business Decisions

- Creating Value without Taking Unnecessary Risk
- Tolerable Frequency is Decision Criterion for Design and Operational Changes

Use of LOPA

- Tolerable Frequency is Decision Criteria for Design and Operational Changes
- Allocate Proportionate Resources Commensurate with Risk
- Higher Consequence Lower Tolerable Frequency
- Acceptable Risk = Risk Tolerance
- Company Decisions Based On Risk Tolerance

LOPA Steps

- Step 1 Analyze Single Event/Consequence
 - ▶ Specific Hazard, Receptor, & Consequence
- Step 2 Determine Tolerable Frequency
- Step 3 Assess Probability of Initiating Events
- Step 4 Identify Independent Protection Layers (IPLs)
- Step 5 Calculate Expected Frequency
 - Initiating Event x Failure of Safeguards
- Step 6 Determine Safeguards
- Step 7 Determine Residual Risk
- Step 8 Apply Safeguards Until Acceptable Risk

LOPA Worksheet

Facility:		Date:	
Process:		•	
Equipment ID:	Equipment Reference:		
Analyst(s):	•		
Scenario Number:	Scenario Description:	Hazard(s):	
Item	Description	Probability	Frequency (per year)
Consequence			
Initiating Event			
Enabling Event or Condition			
-	Probability of ignition		
	Probability of personnel in affected area		
Conditional Modifiers (if applicable)	Probability of fatal injury		
	Others		
Frequency of Unmitigated Consequence			
Independent Protection Layers			
Safeguards (non-IPLs)		_	
		_	
Total PFD for all IPLs			
Frequency of Mitigated Consequece			
Risk Tolerance Criteria:			
Actions Required:	•		
Referencees:			
Quality Review:			
Notes:			

5.3. Frequency Estimation

Failure Rates

- Standard Industry Values
- Standard Corporate Values
 - Comparable
 - Common Risk Decisions

	Frequency Range	Example of a Value Chosen by a Company for Use in LOPA (per year)	
Initiating Event	from Literature (per year)		
Pressure vessel residual failure	10-5 to 10-7	1×10^{-6}	
Piping residual failure – 100 m – Full Breach	10-5 to 10-6	1×10^{-5}	
Piping leak (10% section) - 100 m	10 ⁻³ to 10 ⁻⁴	1×10^{-3}	
Atmospheric tank failure	10-3 to 10-5	1×10^{-3}	
Gasket/packing blowout	10-2 to 10-6	1×10^{-2}	
Turbine/diesel engine overspeed with casing breach	10^{-3} to 10^{-4}	1×10^{-4}	
Third party intervention (external impact by backhoe, vehicle, etc.)	10 ⁻² to 10 ⁻⁴	1×10^{-2}	
Crane load drop	$10^{\scriptscriptstyle +3}$ to $10^{\scriptscriptstyle -4}{\rm per}{\rm lift}$	1×10^{-4} per lift	
Lightning strike	$10^{\text{-}3}$ to $10^{\text{-}4}$	1×10^{-3}	
Safety valve opens spuriously	10-2 to 10-4	1×10^{-2}	
Cooling water failure	1 to 10^{-2}	1×10^{-1}	
Pump seal failure	10 ⁻¹ to 10 ⁻²	1×10^{-1}	
Unloading/loading hose failure	1 to 10-2	1×10^{-1}	
BPCS instrument loop failure Note: IEC 61511 limit is more than 1 × 10 ⁻⁸ /hr or 8.76 × 10 ⁻² /yr (IEC, 2001)	1 to 10-2	1×10^{-1}	
Regulator failure	1 to 10-1	1×10^{-1}	
Small external fire (aggregate causes)	10 ⁻¹ to 10 ⁻²	1×10^{-1}	
Large external fire (aggregate causes)	10-2 to 10-3	1×10^{-2}	
LOTO (lock-out tag-out) procedure* failure *overall failure of a multiple-element process	10 ⁻³ to 10 ⁻⁴ per opportunity	1 × 10 ⁻³ per opportunity	
Operator failure (to execute routine procedure, assuming well trained, unstressed, not fatigued)	10 ⁻¹ to 10 ⁻³ per opportunity	1 × 10 ⁻² per opportunity	

71

tism of the company's risk tolerance criteria. Failure rates cad a so be greatly affected by preventive maintenance (PM) routines

Ref. Center for Chemical Process Safety, Layer of Protection Analysis: Simplified Process Risk Assessment

- Independent from the Initiating Event
- Independent from other IPLs/Safeguards

LOPA IPL Values

- Standard Industry Values
- Standard Corporate Values
 - Comparable
 - Common Risk Decisions

TABLE 6.3 Examples of Passive IPLs				
IPL	Comments Assuming an adequate design basis and adequate inspection and maintenance procedures	PFD from Literature and Industry	PFD Used in This Book (For screening)	
Dike	Will reduce the frequency of large consequences (widespread spill) of a tank overfill/rupture/spill/ etc.	$1 \times 10^{-2} - 1 \times 10^{-3}$	1×10^{-2}	
Underground Drainage System	Will reduce the frequency of large consequences (widespread spill) of a tank overfill/rupture/spill/ etc.	$1 \times 10^{-2} - 1 \times 10^{-3}$	1×10^{-2}	
Open Vent (no valve)	Will prevent over pressure	$1 \times 10^{-2} - 1 \times 10^{-3}$	1×10^{-2}	
Fireproofing	Will reduce rate of heat input and provide additional time for depressurizing/firefighting/etc.	$1 \times 10^{-2} - 1 \times 10^{-3}$	1×10^{-2}	
Blast-wall/ Bunker	Will reduce the frequency of large consequences of an explosion by confining blast and protecting equipment/buildings/etc.	1 × 10 ⁻² = 1 × 10 ⁻³	1 × 10-3	
"Inherently Safe" Design	If properly implemented can sig- nificantly reduce the frequency of consequences associated with a scenario. Note: the LOPA rules for some companies allow inherently safe design fatures to eliminate certain scenarios (e.g., vessel design pressure exceeds all possi- be ligh pressure challenges).	1 × 10 ⁻¹ - 1 × 10 ⁻⁶	1 × 10-2	
Flame/Detona- tion Arrestors	If properly designed, installed and maintained these should eliminate the potential for flash- back through a piping system or into a vessel or tank.	$1 \times 10^{-1} - 1 \times 10^{-3}$	1×10^{-2}	

24

23

6. Identifying Indepe

can be credited as IPLs with a high level of confidence and will significantly reduce the frequency of events with potentially major consequences. However, there may be other, less serious consequences (such as a fire in dike, blast damage to some equipment) that should be analyzed in other scenarios. Fireproofing is a means of reducing the rate of heat input to equipment (e.g., when considering the sizing basis for relief valves, for preventing a boil-

Ref. Center for Chemical Process Safety, Layer of Protection Analysis: Simplified Process Risk Assessment

92

Benefits

- Simplified Framework for Understanding Risk
- Defensible Process/Procedure
- Less Time Than Quantitative Risk Analysis
- Defines Safety Integrity Levels
- Defines Hierarchy of Controls
- Means of Comparing Risk

Limitations

- Internal Risk Comparisons Valid Only When Using Same LOPA Method
- Result Values Are Not Precise
- Should Not Be Applied to All Scenarios
- Time/Resource Commitment
- Not Hazard Identification/Evaluation Tool
- External Risk Comparisons Not Typically Valid

References Guidelines for Hazard Evaluation Procedures, 3rd Ed; CCPS 2008 Layer of Protection Analysis: Simplified Process Risk Assessment; CCPS 2001 Guidelines for Initiating Events and Independent Layers of Protection Analysis, 1st Ed; CCPS 2014 Guidelines for Enabling Conditions and Conditional Modifiers in Layer of Protection Analysis; CCPS 2015 Layer of Protection Analysis; PII 2014

Follow Up with Parvati

- Facility/Worker/Nuclear Safety & Safety Basis
 - Redbook Training
 - Redbook Overview
 - Redbook HE Techniques
 - What-If/Checklist
 - Failure Modes & Effects Analysis (FMEA)
 - Hazard & Operability Analysis (HazOp)
 - Layer of Protection Analysis (LOPA)
 - Risk Analysis
 - Inherent Safety Reviews

 - Compliance Auditing & Readiness
 - Hazard Evaluation Facilitation
 - Peer Review PHA (HI + HE)
 - Integration Techniques
 - Systems Theoretic Accident Model and Processes Analysis (STAMP)/ Systems Theoretic Process Analysis (STPA)
- Traditional ES&H/IH/OS Services

Kelsey L. Forde CIH CSP CHHM klforde@parvaticorp.com

(505) 967-8917

Timothy S. Stirrup REM ASP CHMM Perform Process Hazards Analysis

- tsstirrup@parvaticorp.com
- (505) 980-3743

www.parvaticorp.com

