Facility: DOE Complex

Best Practice Title: Electrical Utility Risk Assessment

Point of Contact:									
Don Lehman	INL	(208) 821-5947	Don.Lehman@inl.gov						
Scot Winningham	ORNL	(865) 574-6190	Winninghamrs@ornl.gov						
Melkie Tega	DOE-PPPL	(609) 243-3707	Melkie.Tega@science.doe.gov						

Brief Description of Best Practice: This best practice is developed to define and evaluate risk for working with medium and high voltage activities in the DOE complex.

Why the best practice was used: Electrical Utility tasks involve high hazard activities where the risk is often undefined. This best practice is developed to assess the risk of high hazard activities to assist DOE contractors in implementing controls to reduce risk. These controls follow the hierarchy of control method defined in ISM and NFPA 70E. Additionally, human performance indicators and tools are utilized to address the human element of risk.

What are the benefits of the best practice: Using this best practice will allow DOE contractors to evaluate their high hazard tasks in order to reduce risk to an acceptable level. This best practice provides a common, systematic approach for all DOE contractors to evaluate their Electrical Utility Operations. Making use of this systematic approach will enable each site to implement adequate work control to assure the proper rigor, staffing, and work method controls are in place and implemented for appropriate high-risk activities.

What problems/issues were associated with the best practice: NFPA 70E requires electrical activities to go through a risk assessment process; however, Electrical Utility Operations are exempted from those requirements. Electrical Utility Operations are among the highest hazard activities performed on DOE sites. This is developed to evaluate the risk of EUO high hazard task and provide methods for implementing risk control.

How the success of the Best Practice was measured: This best practice was developed using several experienced EUO personnel from multiple DOE sites.

Description of process experience using the Best Practice: The known operating experience to date is limited to a few sites associated with the development of this product who have successfully employed some or all of the components of this Best Practice at their respective sites.

Scope and Applicability

The best practice applies to Electrical Utility Operations (EUO) at United States Department of Energy (DOE) sites. The risk assessment herein covers the scope of high hazard electrical work not covered by NFPA 70E *Electrical Safety in the Workplace*.

Note: The information provided is intended to be modified by each facility to meet their applicable mission, roles, staffing, and tasks.

Line Manager	• Review high risk work to determine if appropriate hierarchy of controls are implemented.
	Review and approve energized electrical work requiring a permit.
	Participate in the pre-job and/or package walkdown
Foreman/Supervisor	 Provide oversight as needed for the assigned task
	Participate in the pre-job and/or package walkdown
Engineer/Planner	Prenare the work nackage
	 Involve appropriate Subject Matter Experts (SMEs) as
	appropriate Subject Matter Experts (SMES) as
	• Utilize the Rick According to Matrix detailed in this heat
	Othize the Risk Assessment Matrix detailed in this best practice
	Provide field technical expertise as needed
	Provide interface with Engineering and Decign percenteel to
	Provide interface with Engineering and Design personnel to ansure that ricks and safety baseds encountered in the field
	are considered
	are considered.
Additional Worker	Participate in the pre-job and/or package walkdown
	Irained and prepared for emergency rescue.
	Satisfies the 2-person rule.
	Implement Human Performance Indicators (HPI) principles to
	reduce the severity of consequences of human error.
Crew Chief / Lead Worker	Participate in the pre-job and/or package walkdown
	 Trained and prepared for emergency rescue.
	Satisfies the 2-person rule.
	Implement HPI principles to reduce the severity of
	consequences of human error.
	Serves as the Employee in Charge.
Safety	Participate in work package planning and walkdowns.
Sarcty	Assists with recognition and control of hazards.
	• Provide technical guidance in the work planning process.

Roles and Responsibilities:

Performing a Risk Assessment for High Hazard Electrical Utility Operation Tasks:

Identify the Scope and Hazards

- 1. Identify the scope of work that will be assessed for risks.
- 2. Perform a planning walk-down and/or table-top to identify hazards (shock, arc flash, environmental, chemical exposure, work from heights, etc.) associated with the task(s). Involve appropriate SMEs, as needed.
- 3. Identify possible situations that could develop into accidents during work task, considering serious/high impact, but credible, scenarios.

Categorization

- 1. Using Table 1, organize scenarios into one of the following three categories, according to what would be impacted by an accident: More than one may apply.
 - People
 - Equipment including critical system operational function
 - Environment

Assign Consequences and Severity

- 1. Review the Consequence and Severity Definition of Scale.
- 2. Select the most appropriate severity using:
 - Site documented events
 - DOE documented events
 - Electrical Utility industry documented events.
- 3. Document the severity for the selected scenario.

Estimate Likelihood

- 1. Select the most appropriate likelihood using:
 - Site documented events
 - DOE documented events
 - Electrical Utility industry documented events.
- 2. Document the likelihood for the selected scenario.

Utilize the Risk Assessment Matrix and Implementing Controls

1. Calculate risk. Risk = Severity × Likelihood.

Example: Environmental Release that has previously occurred at the facility

Severity (4) × Likelihood (3) = Total Risk (12)

- 2. Record the risk score current work practice controls.
- 3. If evaluated risk is unacceptable, utilize the hierarchy of risk control method to implement additional controls to reduce risk. Examples of hierarchy of risk control methods are below:
 - Elimination
 - Conductors and/or circuit parts de-energized, have a visible open, and are equipotentially grounded
 - Substitution
 - Remote device operation
 - Reduce energy to below hazardous energy thresholds
 - Engineering
 - Adjusting relay protection
 - Arc flash reduction maintenance switch

____Controls below this should have redundancy in implementation –

Consider utilizing HPI tools/concepts____

• Awareness

- Signs, barricades, barriers
- o Labels
- Attendant/Spotter
- Administrative
 - 3-part communication for switching
 - o Training
 - o Procedures
- Personal Protective Equipment (PPE)
 - Shock and arc flash PPE

Table	1:	Risk	Assess	ment	Matrix
-------	----	------	--------	------	--------

	Consequence			Probability – Increasing Likelihood							
				1	2	3	4	5			
Severity	People	Equipment	Environment	Event never heard of in the industry	Event heard of in the industry	Event has occurred in similar company	Event happens several times per year	Event occurs several times per year in a specific location			
1	No health effects or injury	No damage	No effect	1	2	3	4	5			
2	Slight health effect of injury (first aid)	Minor damage	Minor effect	2	4	6	8	10			
3	Minor health effect of injury (outpatient)	Localized damage	Contained effects	3	6	9	12	15			
4	Major injury requiring surgery, hospitalization or extensive treatments	Major damage	Uncontained effects	4	8	12	16	20			
5	Fatalities	Extensive damage	Extensive Geographic effects	5	10	15	20	25			
Low 1 - 6				dium 7 - 12	2		High 13 - 25	,			

Note: Each site should establish the site-specific thresholds for consequence and severity.

Human Performance

- 1. Utilize site HPI program to provide an avenue for worker and work evolution success.
- 2. See NFPA 70E (2018) and DOE HPI Handbook Vol. 1 and 2.

Oversight Matrix

1. Implement Oversight Matrix per determined level of risk.

		Table 2: Ove	ersight Matrix			
Level of Risk	Additional Worker	Crew Chief / Lead Worker	Foreman / Supervisor	Safety Er	gineer / Planner	Line Manager
LOW	*	*	А, В	*	*	*
MEDIUM	A, C	Α, C	А, В, С	A, *	А	*
HIGH	A, C	A, C	A, D	Α, C	Α, C	*

2. Oversight Matri . .

A: Involved in pre-job and/or package walk down

B: Periodic/random job involvement or oversight

C: On the job for the Risk element of the task

D: Full task oversight

* May be required per site requirements

** Additional worker to be a qualified worker for the equipment, task, and/or potential rescue.

References

29 CFR 1910.269 DOE HPI Handbook Volumes I & II NFPA 70E (2018) Standard for Electrical Safety in the Workplace IEEE ANSI C2 (2017) National Electrical Safety Code

Appendix A: Examples of Task Based Risk Assessment

		Shock Exposure		Shock	Analysis		Arc F	lash An	alysis	Ri	sk Mat	rix	Risk		(Oversight	t Matri	x	
	Task	Exposed and Energized >50V	Shock Hazard <150Vac	Shock Hazard 151 - 750Vac	Shock Hazard 751 - 15kV	Shock Hazard >15kV	Arc Flash Hazard <1.2 cal/cm2	Arc Flash Hazard 1.2 to 12 cal/cm2	Arc Flash Hazard >12 cal/cm2	Severity	Likelihood	Risk Score	Risk Level	Additional Worker	Crew Chief / Lead Worker	Foreman / Supervisor	Safety	Engineer / Planner	Line Manager
	Transformer Visual																		
1	crossin MAD)	No						7.6		2	1	2	LOW	*	*	A, B	*	*	*
	Applying Grounds																		
2	(15kV system)	Yes			15000			4.8		3	4	12	MEDIUM	A, C	A, C	A, B, C	A, *	Α	*
	Manually racking																		
3	breaker	Yes			13800				23.1	4	4	16	HIGH	А, С	A, C	A, D	A, C	A, C	*

Table A1: Example Task Based Risk Assessment

А	Involved in pre-job and/or package walk down							
В	Periodic/random job involvement or oversight							
С	On the job for the Risk element of the task							
D	Full task oversight							
*May be r	equired per site requirement							
**Additio	nal worker should be a qualfie	ed worker for the equipm	ent and task					

Example 1:

Task: Perform visual inspections on an outdoor 15kV transformer (checking for oil leaks, oil level, cracking in concrete, welds, etc.). This is normally performed monthly by one person.

Hazards:

Arc Flash (calculated) = 7.6 cal/cm^2 Bees, wasps, snakes, animal feces Slips, trips, and falls Overhead energized 15kV line Heat/Cool stress Likelihood of Occurrence = 1 Severity of Occurrence = 2 Calculated Risk = 2 (Low) Additional Controls: None Required

Example 2:

Task: Establishing an equipotential ground for replacement of pole mounted 15kV transformer.

Hazards:

Shock Hazard = 15kV Arc Flash (calculated) = 4.8 cal/cm^2 Bees, wasps, snakes Slips, trips, and falls Other energized circuits in the area. Working from heights, hoisting and rigging Potential re-energization and/or induction High winds, other weather events Likelihood of Occurrence = 4 Severity of Occurrence = 3

Calculated Risk = 12 (Medium)

Additional Controls:

Fall Protection Electrical shock and arc flash PPE Live-line tools and Minimum Approach Distance (MAD) Switching orders

Example 3:

Task: Manually racking in and out 13.8 kV distribution breaker XYZ for scheduled maintenance.

Hazards:

Shock Hazard = 13.8 kV Arc Flash (calculated) = 23.1 cal/cm^2 Slips, trips, and falls Heavy loads (>100 lbs) Other energized cubicles in the area (look-alike equipment). Limited workspace, ergonomics, egress Pinch points Other maintenance work in the area Other voltages available in the cubicle (control voltages) Likelihood of Occurrence = 4 Severity of Occurrence = 4 Calculated Risk = 16 (High) Additional Controls: Arc Flash PPE Breaker lift cart Safety toe shoes Switching orders Signage and labels