
Software Disasters and the
Importance of Proper Testing

EFCOG 2021

Software Disasters and
the Importance of Proper Testing

The cost of software problems or errors is a
significant problem to global industry, not
only to the producers of the software but
also to their customers and end users of the
software.

Software Disasters and
the Importance of Proper Testing

The Art of Software Testing, Glenford J. Myers

• A necessary part of a test case is a definition of the .

• A should avoid attempting to .

• A should its own .

• Thoroughly the of each .

• Test cases must be written for and , as well as and , input conditions.

a program to see if it it is to is only half the battle. The other half is
whether the it is to do.

test unless the program.

plan under the assumption that will be found.

• The of the of more in a section of a program is to the of
already found in that section.

is an extremely and task.

is the of a with the of .

• A case is one that has a of an as-yet .

• A test case is one that an .

Glenford Myers-Computer Scientist
Glenford Myers is an American computer scientist, entrepreneur, and author. He founded two successful high-tech companies, authored
eight textbooks in the computer sciences, and made important contributions in microprocessor architecture. He holds a number of
patents, including the original patent on "register scoreboarding" in microprocessor chips. He has a BS in electrical engineering from
Clarkson University, an MS in computer science from Syracuse University, and a PhD in computer science from the Polytechnic Institute
of New York University

Software Disasters and
the Importance of Proper Testing

The Complete Guide to Software Testing, Bill Hetzel

Key Testing Principles:

is .

is and .

• An important for is to .

is .

must be .

requires .

National Security always matters, obviously. But the
reality is that if you have an open door in your software
for the good guys, the bad guys get in there too.
Tim Cook

Dr. William C. Hetzel is an expert in the field of software testing. He compiled the papers from the 1972 Computer Program Test
Methods Symposium, also known as the Chapel Hill Symposium, into the book Program Test Methods. The book, published in 1973,
details the problems of software validation and testing.
In 1988 Gelperin and Heztel write the article The Growth of Software Testing. In it they discuss four major models for software testing.
The first two are Phase Models, and the second two are Life Cycle Models.[

Gelperin and Hetzel developed the STEP methodology for implementing the original IEEE-829-1998 Standard for Software and
System Test Documentation.Their firm was instrumental in gaining recognition for testing as a separate discipline within the software
industry.

Software Disasters and
the Importance of Proper Testing

Effective Software Testing: 50 Specific Ways to Improve Your Testing,
Elfriede Dustin

1. Involve Testers from the Beginning

2. Verify the Requirements

3. Design Test Procedures As Soon As Requirements Are Available

4. Ensure That Requirement Changes Are Communicated

5. Beware of Developing and Testing Based on an Existing System

6. Understand the Task At Hand and the Related Testing Goals

7. Consider the Risks

8. Base Testing Efforts on a Prioritized Feature Schedule

9. Keep Software Issues in Mind

10. Acquire Effective Test Data

11. Plan the Test Environment

12. Estimate Test Preparation and Execution Time

Developer testing is an important step towards accountability. It gives
developers a way to demonstrate the quality of the software they produce.
Kent Beck

Elfriede Dustin is author of the book “Effective Software Testing” and
lead author of “Automated Software Testing” and “Quality Web
Systems.”

Software Disasters and
the Importance of Proper Testing

Effective Software Testing: 50 Specific Ways to Improve Your Testing,
Elfriede Dustin

13. Define Roles and Responsibilities

14. Require a Mixture of Testing Skills, Subject-Matter Expertise, and Experience

15. Evaluate the Tester's Effectiveness

16. Understand the Architecture and Underlying Components

17. Verify That the System Supports Testability

18. Use Logging to Increase System Testability

19. Verify That the System Supports Debug and Release Execution Modes

20. Divide and Conquer

21. Mandate the Use of a Test-Procedure Template and Other Test-Design Standards

22. Derive Effective Test Cases from Requirements

23. Treat Test Procedures as "Living" Documents

24. Utilitize System Design and Prototype

25. Use Proven Testing Techniques when Designing Test-Case Scenarios.

26. Avoid Including Constraints and Detailed Data Elements within Test Procedures

27. Apply Exploratory Testing

28. Structure the Development Approach to Support Effective Unit Testing

29. Develop Unit Tests in Parallel or Before the Implementation

30. Make Unit-Test Execution Part of the Build Process

31. Know the Different Types of Testing Support Tools

32. Consider Building a Tool Instead of Buying One

33. Know the Impact of Automated Tools on the Testing Effort

34. Focus on the Needs of Your Organization

35. Test the Tools on the Application Prototype

36. Do Not Rely Solely on Capture/Playback

37. Develop a Test Harness When Necessary

Software Disasters and
the Importance of Proper Testing

Effective Software Testing: 50 Specific Ways to Improve Your Testing,
Elfriede Dustin

38. Use Proven Test-Script Development Techniques

39. Automate Regression tests When Feasible

40. Implement Automated Builds and Smoke Tests

41. Do Not Make Nonfunctional Testing an Afterthought

42. Conduct Performance Testing with Production-Sized Databases

43. Tailor Usability Tests to the Intended Audience

44. Consider All Aspects of Security, for Specific Requirements and System-Wide

45. Investigate the System's Implementation To Plan for Concurrency Tests

46. Set Up an Efficient Environment for Compatibility Testing

47. Clearly Define the Beginning and End of the Test-Execution Cycle

48. Isolate the Test Environment from the Development Environment

49. Implement a Defect-tracking Life Cycle

50. Track the Execution of the Testing Program

Software Disasters and
the Importance of Proper Testing

Effective Software Testing: 50 Specific Ways to Improve Your Testing,
Elfriede Dustin

Software Disasters and
the Importance of Proper

Testing
Software Disaster's due to Lack of

Testing

Software Disasters

• .

Great Software has seemingly limitless potential to solve human
problems – and it can spread around the world in a blink of an eye.
Malicious code moves just as quickly, and when software created for
the wrong reason, it has a huge and growing capacity to harm millions
of people.

Craig Federighi

Software Disasters
Software Configuration Error Caused Plane Crash

• An executive of Airbus Group has confirmed that the crash of an Airbus A400M military transport was caused by a faulty
software configuration. Marwan Lahoud, chief marketing and strategy officer for Airbus, told the German newspaper
Handelsblatt on Friday that there was a "quality issue in the final assembly" of the components of the aircraft engine.

• https://en.wikipedia.org/wiki/2015_Seville_Airbus_A400M_crash

• The problem appeared to be a compatibility issue between the recorders and the DGA's data reading system, rather than
an issue with the condition of the recorders themselves.

• Airbus Chief Strategy Officer Marwan Lahoud confirmed on 29 May that incorrectly installed engine control software
caused the fatal crash. "The black boxes attest to that there are no structural defects [with the aircraft], but we have a
serious quality problem in the final assembly.

Software Disasters
Nasa’s Metric Confusion Caused Mars Orbiter Loss

• WASHINGTON (AP) Mars Climate Orbiter was
speeding through space and speaking to NASA in
metric for nine months. In fact, the engineers on the
ground were replying in non-metric English.

• The Mars Climate Orbiter was a 638-kilogram robotic
space probe launched by NASA on December 11, 1998
to study the Martian climate, Martian atmosphere, and
surface changes and to act as the communications
relay in the Mars Surveyor '98 program for Mars Polar
Lander.

• However, on September 23, 1999, communication with
the spacecraft was permanently lost as it went into
orbital insertion.

• The spacecraft encountered Mars on a trajectory that
brought it too close to the planet, and it was either
destroyed in the atmosphere or escaped the planet's
vicinity and entered an orbit around the Sun.

• An investigation attributed the failure to a
measurement mismatch between two software
systems: metric units by NASA and US Customary
units by spacecraft builder Lockheed Martin.

Software Disasters
Recalled 990,000 Vehicles for Air Bag Malfunction

• According to a bulletin from the National Highway Traffic Safety Administration, the recall affects 989,701 vehicles
registered in the U.S.

• The recall stems from a flaw in Nissan's occupant classification system software -- the software that determines
whether the front passenger seat is occupied. When that software detects a passenger, it activates the airbags
around the passenger seat. It believes the seat is empty, and deactivates those airbags.

• Unfortunately, the software installed on the vehicles listed above may incorrectly determine that the passenger
seat is empty when it is, in fact, occupied. If that were to happen, and if the vehicle were subsequently involved in
an accident, the passenger-seat airbags would fail to deploy, increasing the possibility of injury or death.

Software Disasters
Northeast Blackout

• The Northeast blackout of 2003 was a widespread power outage through Northeastern and Midwestern United States, and
the Canadian province of Ontario

• At the time, it was the world's second most widespread blackout in history.

• The outage, affected an estimated 10 million people Canada, and 45 million people U.S.

• The blackout's proximate cause was a software bug in the alarm system at the control room of FirstEnergy, an Akron, Ohio–
based company,

• The “bug”, rendered operators unaware of the need to redistribute load after overloaded transmission lines drooped into
foliage. What should have been a manageable local blackout cascaded into the collapse of much of the Northeast regional
electricity distribution system.

Software Disasters
Northeast Blackout

• Findings

– FirstEnergy (FE) did not operate its system with appropriate voltage criteria."

– FirstEnergy "did not recognize or understand the deteriorating condition of its system."

– FirstEnergy "failed to manage adequately tree growth in its transmission rights-of-way."

– Finally, the "failure of the interconnected grid's to provide effective real-time diagnostic support.“

• A generating plant in Ohio, went offline amid high electrical demand, putting a strain on high-voltage power lines ,which later went
out of service when they came in contact with "overgrown trees".

• This trip caused load to transfer to other transmission lines, which were not able to bear the load, tripping their breakers. Once
these multiple trips occurred, many generators suddenly lost parts of their loads, so they accelerated out of phase with the grid at
different rates, and tripped out to prevent damage. The cascading effect that resulted ultimately forced the shutdown of at least
265 power plants.

• Computer failure

• A software bug known as a race condition existed in General Electric Energy's Unix-based XA/21 energy management system.
Once triggered, the bug stalled FirstEnergy's control room alarm system for over an hour. System operators were unaware of the
malfunction. The failure deprived them of both audio and visual alerts for important changes in system state.

• Unprocessed events queued up after the alarm system failure and the primary server failed within 30 minutes.

• Then all applications (including the stalled alarm system) were automatically transferred to the backup server, which itself failed.

• The server failures slowed the screen refresh rate of the operators' computer consoles from 1–3 seconds to 59 seconds per
screen.

• The lack of alarms led operators to dismiss a call from American Electric Power about the tripping and reclosure of a 345 kV
shared line in northeast Ohio.

• But, after the control room itself lost power, control room operators informed technical support (who were already troubleshooting
the issue) of the alarm system problem.

Software Disasters
Overexposure of radiation therapy patients in National Cancer Institute,

Panama City
It is one of the 6 Famous Software Disasters.

• It was a Therapy planning software caught in a series of accidents,

• Created by Multi Data Systems International, a U.S. firm, the software (could have been a spreadsheet (CDR)),….not
able to calculate properly the exact dosage of radiation for patients undergoing radiation therapy.

• In March 2001, serious overreactions in patients undergoing radiation therapy for cancer treatment.
– Of the 478 patients treated for pelvic cancers, 3 of them had died, possibly from an overdose of radiation.

– treatment times calculated using a computerized treatment planning system

– Twenty-three of the 28 overexposed patients had died by September 2005, with at least 18 of the deaths being from
radiation effects.

• The Latin American Association for Radiation Oncology established an accreditation commission.

• Accreditation will require that centers implement a comprehensive radiation oncology quality assurance program
that follows international guidelines.

Software Disasters
Frenchman Sues Uber Over A Software Bug

• In what could’ve been a thrilling episode of To Catch a Cheater, a French businessman has filed a whopping $45
million lawsuit against Uber after a bug in the ride-sharing app allegedly allowed his wife to keep tabs on his trips,
ultimately leading her to suspect he was being unfaithful.

• According to French newspaper Le Figaro, the man claimed the glitch caused the app to send notifications as well
as other transportation details to his wife’s handset.

• While it remains unclear what caused the malfunction, the man purportedly used his wife’s device to log in to Uber,
but the phone kept receiving notifications of his journeys long after he eventually logged out.

• The resident now seeks $45 million in damages from Uber, claiming the privacy flaw cost him his marriage.

• Android users should be safe as the vulnerability appears to be limited solely to “iOS versions of the app updated”
after December 16.

Software Disasters

• In January 2018, the citizens of Hawaii were notified to take
immediate cover in the face of an inbound ballistic missile strike.

• It turned out to be a false alarm, although it took over 30 minutes
(and, presumably, several thousand heart attacks) before the alert
was retracted.

• Investigations found that while the problem was largely due to
human error, there were “troubling” design flaws in the Hawaii
Emergency Management Agency’s alert origination software.

Hawaii Sends Out a State-Wide False Alarm About a Missile Strike

Software Disasters and
the Importance of Proper Testing

In Conclusion, Testing is one of the major parts of any development and change in any software. The overall objective
of testing is not to find every software bug that exists but to expose situations that could negatively impact the

customer, maintainability, and usability.

