The Future of Laser Eyewear

• Traditional laser eyewear is based on either

- -Absorption or
- -Reflection

 Absorption is further broken down into dye based technology or Glass based technology

Today's LEP technolgy..Absorption or Reflection

Honeywell

Characteristics of Absorbing laser eyewear

Dye absorbers

Since every dye has a color, the filter will have a tinit.

The higher the protection level required, the darker the tinit / color of the filter

Advances have been made with notch dyes to minimize the darkness of the color but it still reduces colors you can see

Dye absorbers = tinited lens

Absorbing Glass Technology

 In the IR portion of the light spectrum, glass filters provide a 'clear" lens vs a tint for dyes

Downside to this technology is

- weight
- limitations on shapes
- minimum impact resistance

Glass technology= clear lens, less impact

Reflective Technology

- Advantages
 - Lightweight
 - Very good VLT
 - Disadvantages
 - Angle sensitive
 - Limited to shapes it can be applied to

Reflective technology= clear lens, shape limitations

New Military Requirements

- Military is driving new technology as they are not satisfied with existing products on the market
 - Ideal specifications
 - Agile laser eyewear...reacts to any wavelength
 - Non angle sensitive
 - "clear"
 - Ballistic grade

US Military is leading initiative

LEP using absorbing nano structures

• Transmission of LEP at various concentrations

Nano technology enables advancements in LEP

Actual injection molded parts

Honeywell

2 mm Thick Polycarbonate Prototypes Fabricated via Injection Molding of LEP-POLY_NANO Material

<u>The technology</u>

- <u>Active medium</u>: Novel nano metal oxide particles in a composite texture format
- <u>Multiple laser attenuation mechanisms</u>: reflection, scattering, absorption over visible to NIR spectral range with sub-ps response time; targeting at OD > 4, VLT > 60%, color neutral, 0.5mJ/cm2 (*ns*-pulse)/7mW/cm2 (CW) threshold, and all angle protection
- <u>LEP structure</u>: quasi-solid state structure coated on ballistic-proof lens

Ultrafast Self-Reactive Laser Eye Protection

Current Achievements

- Demonstrated a prototype LEP spectacle made on double curvature ballistic-proof lens
- Synthesized and characterized the baseline optical limiting material, i.e., a quasi-solid-state composite coating containing the nanoparticles (NPs)
- The NP composite coating lowered the optical limiting threshold by 19X as compared to the device made from the same nano-particles but in liquid suspension, reaching to <.7mJ/cm2 at 7ns pulsed at 532nm frequency-doubled Nd:YAG laser wavelength
- Increased contrast ratio (CR) by 14X as compared to the device made from the same nano-particles but in liquid suspension; reaching CR = 34:1 [optical density (OD) =1.53], and laser damage threshold = 140J/cm2
- Demonstrated the feasibility of achieving sub-100 fs response speed to laser radiation.

Honeywell

Nano / Active LEP

Actual LEP achieved, OD 1.53 400-2000nm VLT 60%!!

- Driven by Military requirements the LEP of tomorrow could cover
 - Vast majority of commercial laser
 - VLT of greater than 60%
 - Be agile to laser exposure

Note, most projects are just now starting SBIR
Phase II, a 18-24 month process