Cover Page for "Internal Release" Distribution

(Per the requirements of SRS 1B MRP 1.05)

SRS M&O – LIMITED DISTRIBUTION: This information may NOT be further distributed without written approval from SRS M&O (SRNS).

Calculation Cover Sheet

Project/	Task			Calculation No	Projec	t/Task N	0.	
SRNL Waste Characterization				G-CLC-A-00230	N/A			
Radioactive Waste Characterization Calculation			·	Functional Classification General Service Discipline				39
				Waste Characterizat	ion			
Calculat	ion Type	🗌 Туре 2		Type 1 Calc Status				
Comput	er Program No	🛛 N/A		Version/Release No. N/A				
	and Objective			DC/RO		Date		
The purpose of this Engineering Calculation is to quantify the radiological activity for job control waste (JCW) from R&D ac related to spent fuel cladding hulls (four bags) [Ref. 1] and ca operations (two bags) [Ref. 2]. This activity will be used for characterization of this combined waste cut (i.e., hulls JCW a canyon JCW) to allow for disposal in a low-level waste (LLW) container (e.g., B-25 or Sealand). The objective is to transfer resulting waste container to SWM for disposal.				DOES NOT CONTAIN UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Reviewing/Denying Official: C.A.Botiste, Regulatory Beyrons (Name and organization) Date:(201)				ring and <u>y Bogr</u> ons ation)
into W The to used t	The activity attributed to the combined non-routine waste cut has been provided in Table 3 and should be used for input into WITS using the "00524" LLW stream. In addition, the total waste mass for this waste cut is 203 lb (92 kg) [see IA.5]. The total activity calculated for the non-routine waste cut, combined with routine "SRNLJCW" LLW that will primarily be used to fill the balance of the waste container, meets 1S WAC 3.17 requirements for disposal as LLW. The specific waste container chosen for this waste cut will be determined by the SRNL LLW GCO to allow for operational flexibility.							
GCO	concurrence panella Prinefe	Date 4/9/10			ć			
p		Revis	lons	· · · · · · · · · · · · · · · · · · ·				
	Revision Description	· · · · · · · · · · · · · · · · · · ·						
0	Original Issue							
N/A I	N/A							
		Sign	T					
Rev # K	Originator (Print) Sign/Date erri C. Crawford 4/5/10	Verification/Checking Method Design Check (GS/PS only) Cocument Review Qualification Testing Alternate Calculation Operational Testing	Antonio M.	hecker (Print) Sign/Date Deal 4-9-0	Manager Mark D. Flak			
N/A		Coperational Testing Decument Review Qualification Testing Atternate Calculation Operational Testing	N/A N/A		N/A			
Additiona	Additional Reviewer (Print)			·······	.1	Date		
			Signature N/A					1
Design Authority (Print) N/A			Signature N/A	e Date				
	Release to Outside Agency (Print)			re Date				
	Classification of the Calculation		N/A			l		

Table of Contents

Table of Contents	2
Introduction	
Inputs and Assumptions	
Analytical Methods and Computations	
Results	4
Activity Calculations – Hulls JCW	4
Activity Calculations – Canyon JCW	
Total Non-Routine Waste Cut Activity	6
LLW WAC Compliance	6
HC2 SOF Contribution	7
Open Items	7
Conclusion	7
References	7
Attachments	
Attachment 1: Hulls JCW RMDR, July 27, 2008	
Attachment 2: Assay Results #9796 – Rudisill Bag 1 + Canyon JCW	
Attachment 3: Assay Results #9843 – Rudisill Bags 2, 3, 4 + Canyon JCW	
Attachment 4: Canyon JCW RMDR, February 26, 2010	
Attachment 5: Assay Results #9865 – Canyon JCW	
Attachment 6: Hulls JCW Activity Calculations	
Attachment 7: Canyon JCW Activity Calculations	
Attachment 8: Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package - WITS Input	
Attachment 9: Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package - WITS Limit	
Checks	
Attachment 10: HC2 SOF Calculation	. 39

Introduction

The purpose of this Engineering Calculation is to quantify the radiological activity for job control waste (JCW) from R&D activities related to spent fuel cladding hulls (four bags) [Ref. 1] and canyon operations (two bags) [Ref. 2]. This activity will be used for characterization of this combined waste cut (i.e., hulls JCW and canyon JCW) to allow for disposal in a low-level waste (LLW) container (e.g., B-25 or Sealand). The objective is to transfer the resulting waste container to SWM for disposal. The information submitted on the Radioactive Material Disposition Requests (RMDRs), as well as provided by assay files for these waste bags and other supporting documentation, was used to characterize this combined waste cut for disposal.

This calculation is comprised of the following sections:

- Inputs and Assumptions
- Analytical Methods and Computations
- Results
- Open Items
- Conclusion
- References
- Attachments

Inputs and Assumptions

The following input data and assumptions (IA) are used to perform this calculation:

- IA.1. The hulls JCW was generated by R&D activities in 773-A Lab C-079 (see Attachment 1). The activity expected on the JCW originated from the spent fuel cladding hulls R&D activities, which is documented in Reference 3 and is used to determine the activity distribution. To quantify this activity, the waste bags were assayed (see Attachments 2 and 3).
- IA.2. The canyon JCW was generated by R&D activities in 773-A Lab F-003 and C-134 (see Attachment 4).
- IA.3. Per L7.13 Procedure 005 [Ref. 4], all waste cuts designated as "Canyon" waste are assayed to ensure they do not exceed the TRU waste threshold. The assay results for these waste bags are used to determine the TRU waste concentration (see Attachment 5).
- IA.4. Per the SRNL Waste Certification Plan [Ref. 5], assay values reported as detection level values are not used to provide TRU concentration verification. Only detected TRU radionuclides are used to verify the TRU concentration for TRU waste.
- IA.5. The mass for the combined waste cut is determined from the sum of the waste mass (i.e., "net weight") provided by the assay results (see Attachments 2, 3, and 5).
- IA.6. Low-Level Waste Acceptance Criteria (LLW WAC) are provided in 1S WAC 3.17 [Ref. 6]. LLW WAC compliance is demonstrated through input of test waste cuts into the Waste Information Tracking System (WITS) and the resulting calculations performed by WITS, as recommended by 1S WAC 3.17 [Ref. 6].
- IA.7. The combined waste cut will be added to a waste container (e.g., 20-ft Sealand) filled with routine "SRNLJCW" LLW, which was characterized by G-CLC-A-00152 [Ref. 7].
- IA.8. The activity assigned to the "SRNLJCW" waste cut in the shared waste container is 7.13 E -02 Ci [Ref. 7]. The minimum mass for a 20-ft Sealand filled with "SRNLJCW" LLW is 1,968 kg [Ref. 7]. The activity and minimum mass are used to demonstrate WAC compliance for this waste cut combined with "SRNLJCW" in a single Sealand. The actual "SRNLJCW" waste mass will be determined at the time that the container is closed and accepted by the GCO.
- IA.9. If any other non-"SRNLJCW" waste cuts (i.e., "00524" LLW stream or other LLW stream cuts) are planned to be added to the Sealand that contains this combined waste cut, additional LLW WAC compliance tests may be performed to ensure overall container compliance. These waste cut additions would be made to allow for waste management operational efficiency. This calculation will not be revised since the total activity attributed to this waste cut will not be affected by these additions.
- IA.10. To ensure the 778-A Waste Pad inventory remains below the Hazard Category 2 (HC2) threshold, the HC2 sumof-fractions (SOF) contribution from this waste cut is calculated using the HC2 thresholds per DOE-STD-1027-92 [Ref. 8].

Analytical Methods and Computations

The following steps are used to perform this calculation. The equations used for each step (as applicable) are provided in the Results section below.

- 1. Determine the activity (Ci) per radionuclide for the hulls JCW based on process knowledge and assay data (see IA.1).
- 2. Determine the activity (Ci) per radionuclide for the canyon JCW based on process knowledge and assay data (see IA.2 IA.4).
- 3. Determine the total activity (Ci) per radionuclide for the combined waste cut.
- 4. Determine compliance with LLW WAC [Ref. 6] for the combined waste cut within a waste container (e.g., 20-ft Sealand) containing routine "SRNL JCW" LLW [Ref. 7] (see IA.5 IA.8).
- 5. Determine the HC2 SOF contribution for the combined waste cut (see IA.10).

Results

Activity Calculations – Hulls JCW

As indicated by IA.1, the activity attributed to the hulls JCW is based on a combination of process knowledge and assay results. Specifically, the radionuclides expected on this waste were Co-60, Sr-90, Cs-137, Pu-238, Pu-239/240, and Am-241 (Ref. 3). Of these radionuclides, Sr-90 can not be quantified using assay due to the lack of gamma emissions. However, based on the calculated activity ratio of Sr-90 to Cs-137 (using values reported in Reference 3), this radionuclide can be quantified by scaling to the reported Cs-137 activity. See Attachment 6 for this calculation.

For the radionuclides that can be measured by assay (e.g., Co-60, Pu-238), the measured value was compared to that expected from scaling to Cs-137 or Pu-239 based on the values reported in Reference 3. However, the actual reported assay value is used for further activity calculations. See Attachment 6 for this comparison.

It should be noted that due to the assay configuration and the size of the hulls JCW bags, the assay results are provided on two separate assay files. Specifically, bag 1 was added to routine canyon JCW that was being assayed; these results are provided in Attachment 2. Bags 2, 3, and 4 were added to other routine canyon JCW that was being assayed; these results are provided in Attachment 3. The canyon waste bags there were included in these assay runs are assumed, for the purposes of this calculation, to be included in the larger non-routine waste cut (i.e., more bounding). The assay results are combined for determining the activity attributed to the hulls JCW. See Attachment 6 for calculation of the combined assay results.

In addition to the process knowledge per Reference 3 and assay results per Attachments 2 and 3, the following other activities were calculated. See Attachment 6 for calculation of these activities.

- Daughter radionuclides per 1S WAC 2.02 [Ref. 9]
- I-129 scaled to Cs-137 per G-CLC-A-00152 scaling factor [Ref. 7]
- Plutonium isotopes scaled to Pu-239 per G-CLC-A-00089 scaling factors [Ref. 10]
- Uranium isotopes scaled to U-235 assuming EU at the minimum U-235 weight percent (i.e., 0.75%) [Ref. 11]

After all activities were calculated, the non-Performance Assessment (PA) nuclides that were less than 1Ci% were removed from further consideration, as allowed by 1S WAC 2.02 [Ref. 9]. This analysis resulted in the removal of the following nuclides: Co-60, Pu-242, U-236, U-238, Pa-234m, Th-231, and Th-234. The remaining activities are attributed to the hulls JCW and are provided in Table 1. See Attachment 6 for this calculation. Note that the values in Table 1 have been converted from nCi to Ci (i.e., 1 E +09 nCi per 1 Ci).

Table 1. Hulls JC	W Nuchue Activities
Nuclide	Ci
Am-241	1.78 E -04
Ba-137m	9.30 E -04
Cs-137	9.83 E -04
I-129	5.57 E -10

Table 1. Hulls JCW Nuclide Activities

Calculation No. G-CLC-A-00230 Page 5 of 39

Nuclide	Ci
Pu-238	9.67 E -04
Pu-239	3.45 E -03
Pu-240	7.72 E -04
Pu-241	8.10 E -03
Sr-90	5.64 E -04
U-234	4.24 E -06
U-235	2.91 E -07
Y-90	5.64 E -04
TOTAL	1.65 E -02

Activity Calculations – Canyon JCW

The canyon JCW was generated under the "Canyon" waste stream (see IA.2). As required by SRNL procedures, this JCW was assayed to determine the TRU concentration (see IA.3). The assay results for this JCW are provided in Attachment 5. The TRU concentration was calculated using Equation 1; these calculations are provided in Attachment 7.

$$TRU = \frac{\sum A_{T}}{M}$$

=

where TRU

AT

Μ

=

TRU concentration (nCi/g) Activity for TRU Isotope, T (nCi); see Attachment 5

= Waste Mass (g), per assay results; see Attachment 5

As noted in IA.4, detection level values (i.e., not detected above the detection level; shown as "<" values) are not used to verify the TRU concentration. Per the assay results (see Attachment 5), Pu-238 and Pu-240 were reported as detection level values. If these detection level values are included, the TRU concentration is 126 nCi/g, which exceeds the allowable concentration for LLW. If these detection level values are not included, the TRU concentration is 96 nCi/g, which is below the verified concentration for TRU waste. Therefore, the canyon JCW, as assayed, was not acceptable as routine "SRNLJCW" LLW or as verified TRU waste.

To determine the activity attributed to the non-routine canyon JCW, only measured radionuclides (e.g., Cs-137a, where the "a" designates an actual value) were included (see Attachments 5 and 7). A comparison between these values and the activity that would be attributed to an equivalent volume of routine "SRNLJCW" LLW was used to determine the bounding activity attributed to this waste cut. For those radionuclides where the "SRNLJCW" LLW activity was bounding, no activity was attributed to the non-routine canyon JCW. For those radionuclides where the measured assay activity (including measured assay detection level values) was bounding, the assay activity was attributed to the non-routine canyon JCW. For those radionuclides where the non-routine canyon JCW. In addition, the plutonium isotopes (i.e., Pu-240, Pu-241 and Pu-242) were scaled to Pu-239 using the G-CLC-A-00089 scaling factors [Ref. 10]. Note that since Cs-137 and U-235 were not included as part of this waste cut, no daughter or other scaled nuclides calculations were performed for this waste cut. These calculations are provided in Attachment 7.

After all activities were calculated, the non-PA nuclides that were less than 1Ci% were removed from further consideration, as allowed by 1S WAC 2.02 [Ref. 9]. This analysis resulted in the removal of Pu-242. The remaining activities are attributed to the non-routine canyon JCW and are provided in Table 2. See Attachment 7 for this calculation.

Lable 2. Callyon JC W Muchue Activity		
Nuclide	Ci	
Am-241	3.60 E -05	
Pu-238	7.94 E -05	
Pu-239	4.15 E -04	
Pu-240	9.30 E -05	
Pu-241	9.75 E -04	
TOTAL	1.60 E -03	

Table 2. Canyon JCW Nuclide Activities

Equation (1)

Calculation No.	Page 6 of 39	Revision
G-CLC-A-00230		0

Total Non-Routine Waste Cut Activity

The radionuclide activities and total activity were determined using Equations 2 and 3. The results of these calculations are provided in Table 3.

$$A_i = A_H + A_C$$
 Equation (2)

$$A = \sum A_i$$
 Equation (3)

where

 A_i = Total Activity for radionuclide, i (Ci)

 $A_{\rm H}$ = Hulls JCW Activity for radionuclide, i (Ci); see Table 1

 A_C = Canyon JCW Activity for radionuclide, i (Ci); see Table 2

A = Total Activity for combined non-routine waste cut (Ci)

Nuclide	Ci
Am-241	2.14 E -04
Ba-137m	9.30 E -04
Cs-137	9.83 E -04
I-129	5.57 E -10
Pu-238	1.05 E -03
Pu-239	3.86 E -03
Pu-240	8.65 E -04
Pu-241	9.07 E -03
Sr-90	5.64 E -04
U-234	4.24 E -06
U-235	2.91 E -07
Y-90	5.64 E -04
TOTAL	1.81 E -02

Table 3. Non-Routine Waste Cut Nuclide and Total Activities

Note that the TRU concentration for this combined waste cut, using Equation 1 and the total waste mass (i.e., 92 kg), is 65 nCi/g, which is acceptable for disposal as LLW.

LLW WAC Compliance

Per 1S WAC 3.17 [Ref. 6], the recommended method to demonstrate compliance with WAC requirements is to enter a test package into WITS (see IA.6). Therefore, a test package was created that contained two waste cuts: the "Non-Routine" waste cut and routine SRNL job control waste (JCW). The non-routine waste cut used the "00524" LLW stream, the nuclide activities shown in Table 3, and the assayed total waste cut mass (see IA.5); the routine waste cut used the "SRNLJCW" LLW stream (see IA.7), the total routine activity (see IA.8), and the minimum waste mass (see IA.8). The container used for this test package was a 20-ft Sealand (see IA.7 – IA.8). The WITS input as well as the results (i.e., limit checks) for this test package are provided in Attachments 8 and 9, respectively.

As seen by the limit checks in Attachment 9, a 20-ft Sealand that contains the non-routine waste cut along with routine SRNL JCW is acceptable for disposal in the Engineered Trench (ET). Other disposal locations may also be acceptable but were not specifically tested in WITS because the SWM operational preference is the ET. No PA isotope limits, TRU waste limits, or U-235 fissile gram equivalent (FGE) limits were exceeded.

A WITS test package is not included to demonstrate LLW WAC compliance for the non-routine waste cut as the sole waste cut within the Sealand. Due to the small size of this waste cut relative to the size of the Sealand, the remainder of the Sealand will be filled with waste from the routine LLW stream (i.e., "SRNLJCW").

1 ()

HC2 SOF Contribution

The 778-A Waste Pad is designated as a Hazard Category 3 (HC3) Facility; therefore, the total radiological inventory on the 778-A Waste Pad can not exceed the Hazard Category 2 (HC2) threshold [Ref. 8]. Although the historical contribution from LLW to the HC2 SOF is known to be low compared to the contribution from TRU waste, the contribution of this non-routine LLW cut is checked to ensure it will not impact the current inventory control strategy for the 778-A Waste Pad. The following equation is used to calculate the HC2 SOF.

$$SOF = \sum \frac{A_i}{L_i}$$
 Equation (4)
where $A_i = Activity$ for radionuclide, i (Ci); see Table 3

where	A_i	=	Activity for radionuclide, 1 (C1); see Table 3
	Li	=	HC2 Activity Threshold Limit (Ci) for radionuclide, i [Ref. 8]
	SOF	=	HC2 Sum of Fractions

These calculations are provided in Attachment 10 and indicate the HSC2 SOF for this waste cut is 0.0004. The HC2 SOF for the 778-A Waste Pad is not allowed to exceed a value of 1 to remain as a HC3 Facility [Ref. 8]. Due to the insignificant impact on HC2 SOF from this waste cut, its HC2 SOF contribution does not impact the inventory control strategy for the 778-A Waste Pad.

Open Items

There are no Open Items related to this calculation.

Conclusion

The activity attributed to the combined non-routine waste cut has been provided in Table 3 and should be used for input into WITS using the "00524" LLW stream. In addition, the total waste mass for this waste cut is 203 lb (92 kg) [see IA.5].

The total activity calculated for the non-routine waste cut, combined with routine "SRNLJCW" LLW that will primarily be used to fill the balance of the waste container, meets 1S WAC 3.17 requirements for disposal as LLW. The specific waste container chosen for this waste cut will be determined by the SRNL LLW GCO to allow for operational flexibility.

For the chosen disposal container, if additional characterized non-"SRNLJCW" waste cut(s) are placed into the same container for disposal, a WITS check should be performed prior to placing the additional cut(s) into the container to ensure no WAC limits are exceeded.

Lastly, this waste cut does not impact the HC3 inventory controls used for the 778-A Waste Pad.

References

- 1. Crawford, K. C., SRNL-L8300-2010-0008, "RMDR Disposition FY10-09 (Hulls JCW) Preliminary", Revision 0, March 3, 2010.
- Crawford, K. C., SRNL-L8300-2010-0009, "RMDR Disposition FY10-10 (Canyon JCW) Preliminary", Revision 0, March 9, 2010.
- 3. T. S. Rudisill, "Decontamination of Zircaloy Cladding Hulls from Spent Nuclear Fuel", Journal of Nuclear Materials, 2008.
- 4. SRNL Manual L7.13, Procedure 005, "Quantifying, Manifesting, and Verifying Low-Level Radioactive Waste Packages", Revision 23, October 29, 2007.
- 5. Crawford, K. C., TSD-AEC-96-1114, "SRNL Waste Certification Plan", Revision 9, January 5, 2010.
- 6. SRS Manual 1S, WAC 3.17, "Low-Level Radioactive Waste Acceptance Criteria", Revision 11, January 15, 2009.
- 7. K. C. Crawford, "SRNL Routine Low-Level Waste Consolidation", G-CLC-A-00152, Revision 0, June 28, 2006.
- 8. US Department of Energy, "Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports", DOE-STD-1027-92, Change Notice No. 1, September 1997.

- 9. SRS Manual 1S, WAC 2.02, "Low Level, Hazardous, TRU, Mixed, and PCB Waste Characterization Requirements", Revision 12, October 31, 2008.
- 10. K. C. Crawford, "SRNL Transuranic Waste Spreadsheets", G-CLC-A-00089, Revision 4, December 29, 2009.
- 11. US Department of Commerce National Bureau of Standards, "Standard Reference Materials: Uranium Isotopic Standard Reference Materials", April 1971.

Attachments

- 1. Hulls JCW RMDR, July 27, 2008
- 2. Assay Results #9796 Rudisill Bag 1 + Canyon JCW
- 3. Assay Results #9843 Rudisill Bags 2, 3, 4 + Canyon JCW
- 4. Canyon JCW RMDR, February 26, 2010
- 5. Assay Results #9865 Canyon JCW
- 6. Hulls JCW Activity Calculations
- 7. Canyon JCW Activity Calculations
- 8. Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package WITS Input
- 9. Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package WITS Limit Checks
- 10. HC2 SOF Calculation

- /*

Attachment 1: Hulls JCW RMDR, July 27, 2008

Radioactive Material Disposition Request/ Potential Waste Characterization Changes

INSTRUCTIONS: Complete Section I for Radioactive Material Disposition Request and/or Section II for Potential Waste Characterization Changes, then submit your request to the GCO or CTF. E&WMG will document the disposition of the request separately.

Name: Tracy Rudisil		Date: 7/27/08
Work Group: Act, Nide Tec	Phone No.: 5-2539	Pager: 1550 /

SECTION I – RADIOACTIVE MATERIAL DISPOSITION REQUEST

Description of Material:

Job Control Waste	from	studies	using	5 pent fuel
Cludding Kulls			ð	1
	10000			

Type and condition material i	s in:	068			
Location of material: $\underline{\succ}_{\mathfrak{S}}$	54 (orig	zinally	from	C079	ILC)
Quantity of material:	Bag s		0	8. y y	
Any special handling concern	is: <u>Nonl</u>		200		
Does this material pose any p	ersonal hazards?	□ YES	K NO		
If YES, please describe:			-	02	

SECTION II - POTENTIAL WASTE CHARACTERIZATION CHANGES

Will an upcoming material and/or activity have the potential to change the existing solid radioactive waste characterization as described in the Waste Certification Plan? <u>For Example</u>: Will the activity involve handling different samples that are not normally used in the lab/area? \Box YES \boxtimes NO If YES, please describe the activity and the new samples/materials used:

 /	
1.	

Page 10 of 39

Attachment 2: Assay Results #9796 – Rudisill Bag 1 + Canyon JCW Attachment 2, Page 1 of 7

Report for 12182009R-02

12/22/2009 3:12:55 AM

Page 1

SRTC SWAF NDA 2000 Assay Report

Sample ID: 12182009R-02 Count Sequence Number: 9796 **Operator:** SRSDOMAIN\W6091 Assay Start: 12/18/2009 3:13:32 PM Description 1: CANYON Description 2: Location: F003, C-163, RUDISILL BAG 1 Comment: Matrix Type: Not Used 55-Gallon Drum Container Type: 49.2 kg Weight: Gross: 71.5 kg Net: Container: Volume: 208.0 1 Full: 4100.0 % Density: 0.240 kg /1

Analysis Parameters

Channels: 4096 Conversion Gain: 4096 Energy Calibration: 12/7/09 5:04:54 PM Response Calibration: 7/8/09 3:39:38 PM Energy Tolerance: 1.00 keV Nuclide confid threshold: 0.30 Nuclide Library: C:\GENIE2K\CAMFILES\CANYON.NLB Background File: C:\Canberra\nda2k\Data\00009793_CNTR0001_DCAT0001_PROC000Y.CNF

Summed Non-Segmented Results

File Name:

C:\Canberra\nda2k\Data\00009796_CNTR0001_DCAT0001_PROC000Y.CNF

Background File: • C:\Canberra\nda2k\Data\00009793_CNTR0001_DCAT0001_PROC000Y.CNF

Acquisition Start: 12/18/2009 3:13:32 PM Elapsed Live Time: 172800.00 sec Elapsed Real Time: 274740.07 sec

Attachment 2, Page 2 of 7

Report for: 12182009R-02 12/22/09 3:12:56 AM

.

.

Page 2

Peak Analysis Report mple ID: 12182009R-02 ak Analysis Performed on: 12/22/09 3:12:54 AM ak Analysis From Channel: 80 ak Analysis To Channel: 4096 Peak ROI ROI Peak Energy Net Peak Net Ar No. start end centroid (keV) Area Uncer	t. Counts
ak Analysis Performed on: 12/22/09 3:12:54 AM ak Analysis From Channel: 80 ak Analysis To Channel: 4096 Peak ROI ROI Peak Energy Net Peak Net Ar	t. Counts
ak Analysis From Channel: 80 ak Analysis To Channel: 4096 Peak ROI ROI Peak Energy Net Peak Net Ar	t. Counts
ak Analysis To Channel: 4096 Peak ROI ROI Peak Energy Net Peak Net Ar	t. Counts
Peak ROI ROI Peak Energy Net Peak Net Ar	t. Counts
31	t. Counts
NO STATE AND CANEROLD (KAV) Area Uncor	
no. Deale end concrete (Kev) Area Uncer	
1 147- 155 151.54 59.44 2.31E+006 23662.	4 4.21E+007
2 325- 334 330.37 123.07 1.65E+006 33360.	4 7.85E+007
3 342- 352 347.73 129.24 1.06E+005 36399.	
4 474- 485 480.10 176.35 4.28E+004 32065.	
5 508- 519 513.85 188.36 6.59E+005 33264. 6 563- 574 568.99 207.98 2.40E+005 31488.	
6 563- 574 568.99 207.98 2.40E+005 31488. 7 679- 686 681.19 247.90 3.62E+005 18444.	
8 1143-1153 1150.18 414.80 4.55E+004 17356.	
9 1180- 1191 1186.91 427.87 1.65E+005 18828.	
10 1280- 1293 1286.82 463.43 1.18E+005 22183.	
11 1310- 1323 1316.79 474.10 9.93E+005 21295.	
12 1616- 1627 1620.27 582.11 3.52E+004 8709.2	
13 1643-1654 1647.45 591.79 1.23E+005 8569.4 14 1666-1697 1672.30 600.63 9.42E+004 4641.0	
14 1666- 1697 1672.30 600.63 9.42E+004 4641.0 15 1666- 1697 1683.97 604.78 5.58E+004 4169.5	
16 1666- 1697 1689.76 606.85 3.48E+004 4060.0	
17 1767-1778 1771.55 635.96 5.06E+004 8032.5	
18 1836- 1851 1843.86 661.70 5.90E+008 50075.	
19 1927-1945 1930.52 692.54 2.81E+004 1796.9	
20 1927-1945 1937.86 695.16 4.11E+004 1900.7	
21 2009-2024 2016.96 723.31 4.15E+005 3872.9	
22 2103-2118 2111.05 756.80 9.08E+004 3427.0 23 2167-2196 2174.52 779.40 4.10E+003 1775.0	
23 2167-2196 2174.52 779.40 4.10E+003 1775.0 24 2167-2196 2188.41 784.34 6.11E+003 1914.3	
25 2215- 2228 2220.78 795.87 3.76E+004 2999.2	
26 2272-2300 2275.99 815.52 9.10E+003 1405.5	
27 2272- 2300 2292.62 821.44 7.15E+003 1379.9	
28 2352-2380 2360.83 845.73 1.91E+004 1817.6	
29 2352-2380 2373.36 850.19 9.31E+003 1636.2	
30 2431- 2446 2438.10 873.23 2.17E+005 3130.0 31 2488- 2500 2492.92 892.75 9.97E+003 2389.4	
31 2488- 2500 2492.92 892.75 9.97E+003 2389.4 32 2518- 2533 2525.03 904.18 1.89E+004 2770.5	
33 2775- 2792 2783.87 996.33 1.76E+005 2651.8	
34 2799-2816 2807.70 1004.82 2.99E+005 2725.9	
35 3102- 3117 3109.00 1112.10 5.13E+003 2041.9	
36 3150- 3164 3155.40 1128.62 5.45E+003 1754.3	같은 사망 이 것 같은 것
37 3186- 3198 3189.39 1140.72 2.87E+003 1412.4	40 1.88E+005

Attachment 2, Page 3 of 7

Rej	port	for: 2	L21820	09R-02	12/22/	09 3:12:50	5 AM	Page	3
	Peal No	c ROI . start	ROI end	Peak centroid	Energy (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts	
	38	3272-	3289	3281.00	1173.34	2.76E+006	3730.57	2.22E+005	
M	39	3467-	3494	3472.16	1241.41	1.57E+003	404.67	6.39E+004	
m	40	3467-	3494	3485.72	1246.24	1.18E+004	521.45	7.14E+004	
	41	3556-	3574	3565.22	1274.55	4.93E+005	1718.76	8.45E+004	
Μ	42	3677-	3710	3688.59	1318.48	2.54E+005	1299.07	1.06E+005	
m	43	3677-	3710	3699.39	1322.33	5.88E+005	1769.91	9.66E+004	
	44	3719-	3737	3728.24	1332.60	2.53E+006	3311.54	7.39E+004	
	45	3816-	3829	3819.86	1365.23	8.04E+002	402.09	1.64E+004	
	46	3933-	3949	3940.08	1408.04	3.20E+003	403.21	1.38E+004	
М	47	4058-	4079	4063.68	1452.06	1.87E+003	158.19	5.22E+003	
m	48	4058-	4079	4072.53	1455.21	2.37E+003	134.60	2.59E+003	
				a multiple	and the state of t				

m = Other peak in a multiplet region
F = Fitted singlet

Errors quoted at 2.000 sigma

Attachment 2, Page 4 of 7

Report for: 12182009R-02

12/22/09 3:12:56 AM

Page 4

Muclide Mame	Id Confidence	Energy e (keV)	Yield (%)	Activity (nCi)	Activity Uncertainty		
I-3	0.000	???????????????????????????????????????	??????	4	0		
2-14	0.000	?????????????	??????				
C-60a	0.998	1173.24*	99.90-	3.48E+003	6.09E+001		
		1332.50*	99.98	3.50E+003	7.34E+001		
C-99	0.000	?????????????	??????				
-129	0.000	???????????????????????????????????????	??????				
3A-137m	0.000	???????????????????????????????????????	????? ?				
S-137a	1.000	661.65*	85.10	6.64E+005	1.40E+004		
J-234	0.000	????????????	??????				
J-238	0.000	?????????????	??????				
U-239a	0.537	129.30*	0.01	8.16E+005	2.82E+005		
		375.05	0.00				
		413.71	0.00				
M-241a	0.998	59.54*	35.90	1.26E+005	1.15E+004		
PU-241	0.000	???????????????????????????????????????	??????				

Unidentified Peaks							
Peak No.	Energy (keV)	Peak Size in Counts per Second	Peak CPS				
NO.	(Kev)	counts per second	% Uncertainty				
2	123.07	9.5361E+000	2.02				
4	176.35	2.4745E-001	74.99				
5	188.36	3.8130E+000	5.05				
5 6 7	207.98	1.3881E+000	13.13				
7	247.90	2.0962E+000	5.09				
8 9	414.80	2.6302E-001	38.19				
	427.87	9.5705E-001	11.39				
10	463.43	6.8007E-001	18.88				
11	474.10	5.7484E+000	2.14				
12	582.11	2.0387E-001	24.72				
13	591.79	7.1394E-001	6.95				
M 14	600.63	5.4520E-001	4.93				
m 15	604.78	3.2295E-001	7.47				
m 16	606.85	2.0140E-001	11.67				
17	635.96	2.9265E-001	15.88				
M 19	692.54	1.6288E-001	6.38				
m 20	695.16	2.3798E-001	4.62				
21	723.31	2.3995E+000	0.93				
22	756.80	5.2554E-001	3.77				
M 23	779.40	2.3701E-002	43.34				
m 24	784.34	3.5345E-002	31.34				
25	795.87	2.1737E-001	7.98				

Calculation No. G-CLC-A-00230		Revision 0		
		Attachment 2, Page 5 of 7		
Report for	r: 12182009R-02	12/22/09 3:12:56 AM		Page 5
M 26 m 27 M 28 m 29 30	815.52 821.44 845.73 850.19 873.23	5.2640E-002 4.1352E-002 1.1044E-001 5.3900E-002 1.2570E+000	15.45 19.31 9.52 17.57 1.44	

•

÷

•

Attachment 2, Page 6 of 7

Report for: 12182009R-02 12/22/09 3:12:56 AM

Page 6

Peak	Energy	Peak Size in	Peak CPS	- 60
No.	(keV)	Counts per Second	% Uncertainty	
31	892.75	5.7673E-002	23.98	
32	904.18	1.0925E-001	14.68	
33	996.33	1.0195E+000	1.51	
34	1004.82	1.7309E+000	0.91	
35	1112.10	2.9710E-002	39.77	
36	1128.62	3.1540E-002	32.19	
37	1140.72	1.6621E-002	49.18	
M 39	1241.41	9.0696E-003	25.82	
m 40	1246.24	6.8126E-002	4.43	
41	1274.55	2.8542E+000	0.35	
M 42	1318.48	1.4701E+000	0.51	
m 43	1322.33	3.4023E+000	0.30	
45	1365.23	4.6525E-003	50.01	
46	1408.04	1.8529E-002	12.59	
M 47	1452.06	1.0799E-002	8.48	
m 48	1455.21	1.3689E-002	5.69	

Errors quoted at:

2.00 sigma

E0|54 C5134 Sh-125

C-A-00230					
		Attachment 2, I	age 7 of 7		
Report for: 1	L2182009R-02	12/22/09	3:12:56 AM	Page	
<u>d</u>		NID Summary R	esults		
<u> </u>					
Nuclide		tivity (nCi)	Concentrat:	ion (nCi/g)	
H-3 C-14		+/- 7.53E+002 +/- 2.54E+002		/- 1.53E-002 /- 5.17E-003	
CO-60a		+/- 4.69E+002		/- 9.53E-004	
TC-99		+/- 5.74E+004		/- 1.17E+000	
I-129		+/- 6.31E-003		/- 1.28E-007	
BA-137m		+/- 1.32E+004		/- 2.69E-001	
CS-137a		+/- 1.40E+004	1.35E+001 +	/- 2.84E-001	
U-234		+/- 2.00E+002		/- 4.06E-003	
U-235a		+/- 1.16E+000			
PU-238a		+/- 3.40E+004			
U-238		+/- 2.27E+002		/- 4.61E-003	
PU-239a PU-240a		+/- 2.82E+005	·····································	/- 5.73E+000	
-240a 		+/- 3.16E+004 +/- 1.15E+004			
~PU=241		+/-1.13E+006 +/-1.23E+006		/- 2.34E-001 /- 2.51E+001	
PH-290a		+/- 0.00E+000			
Totals	6.01E+006		1.22E+002		
Errors quoted		2.00 sigma	1.225+002		
Symbols used	1 :				
* = Enei	rgy line found	in the spectr	rum		
		ultiplet regio			
		ultiplet regio	n		
	ted singlet				
		of undetermined	rence analysis		
a = Nuc	lide has energ	v lines not us	ed in weighed me	an activity	
< = MDA	Line has shory	, 11105 1100 u.	ica in weighea me	an accivicy	
Reviewed by:	A	BS	Dete	210/2	
veviewed by:	······		Date	: <u>2/10/10</u>	
		V.			
		~			
				38.7	2
	3.20		-	28.7	
	-			2	

Calculation No.	
G-CLC-A-00230	

Attachment 3: Assay Results #9843 – Rudisill Bags 2, 3, 4 + Canyon JCW Attachment 3, Page 1 of 7

Report for 01192010R-01 1/20/2010 37:47 AM Page 1 SRT~ .F NDA 2000 Report Sample I ation ****** Sample ID: 01192010R-01 ount Sequence Number: 9843 SRSDOMAIN\W6091 Operator: Assa/ Start: 1/19/2010 3:20 . M Description 1: CANYON Description 2: CANYON + 3 RUDIS BAGS (BAGS #2, #3, #4) Loca: ion: Comm. nt: Matrix Type: Not Used Cont iner Type: 55-Gallon Drum 60.3 Weig :: Gross: Net: 38.0 kg Container: Volume: 208.0 Full: 100.0 % 0.193 (1 /1 Dens ty: Analysis meters Chan els: 4096 Conversion Gain: 4096 Enerry Calibration: 12/7/09 54 PM Resp nse Calibration: 1/15/10 1 08 AM Ener / Tolerance: 1.00 ke Nucl le confid threshold: Nucl le Library: 0.30 C:\G {IE2K\CAMFILES\CANYON.NLB Back round File: C:\Camberra\nda2k\Data\00009839_CNTP DCAT0001_PROC000Y.CNF Summed Non-Segme Results File Jame: C:\C nberra\nda2k\Data\00009843_CNT DCAT0001_PROC000Y.CNF Back round File: C:\Camberra\nda2k\Data\00009839_CNT DCAT0001_PROC000Y.CNF Acqu sition Start: 1/19/2010 3:20 Elap ed Live Time: 57600.00 sec psed Real Time: 70216.42 sec

Calculation No.	
G-CLC-A-00230	

Page 18 of 39

Revision 0

Attachment 3, Page 2 of 7

			Attachment 3	3, Page 2 of	7		
Report for: ()11920	10R-01	1/20/1	:37 :4 ′	7 AM	Page	
	1	15 million and a state					
		Ре	ak Analys	Report			
Samp e ID: Peak Analysis Peak Analysis Peak Analysis	s From	Channel:	0119201 3 1/20/10 80 4096	37 :4 6	АМ		
P ak ROI No. start	ROI end	Peak centroid	Energy (keV)	. Peak \rea	Net Area Uncert.	Continuum Counts	
147- 223- 325- 343- 477- M 6 501- m 563- 678- 1 708- 1 1143- 1 1280- 1 1280- 1 1311- 1 414- 1 1280- 1 1311- 1 414- 1 1614- M 1 668- m 2 1668- m 3 2170- m 3 2212- m 3 2212- m 3 2352- m 3 525-	1191 1293 1324 1427 1591 1627 1654 1697 1697 1748 1851 1945 2003 2024 2118 2177 2228 2300 2300 2382	1149.88 1186.88 1286.75 1318.01 1421.00 1584.90 1620.28 1647.41 1672.29 1683.79 1689.37 1741.45 1771.55 1843.75 1930.23 1937.63	778.66 795.83 815.51 821.50	E+003 E+004 E+004 E+005 E+004 E+005 E+004 E	16770.8 20097.8 12129.7 7817.74 9335.65 7981.67 7580.21 9021.09 8598.00 6093.81 4170.24 3823.89 3558.49 1730.73 1629.90 1513.07 2931.64 3120.09 21107.2 748.51 696.77 1365.61 1765.06 1530.97 1250.83 1581.43 736.59 805.77 775.74	6.29E+006 7.81E+006 1.23E+007 9.28E+007 1.66E+007 1.78E+007 1.22E+007 6.00E+006 7.23E+006 5.00E+006 4.74E+006 5.00E+006 2.77E+006 1.51E+006 1.32E+006 1.32E+006 1.32E+006 1.32E+006 1.04E+005 1.04E+005 1.04E+005 1.39E+005 1.81E+005 1.81E+005 1.81E+005 1.82E+005 1.81E+005 1.82E+005 1.82E+005 1.82E+005 1.82E+005 1.82E+005 1.82E+005 1.82E+005 1.68E+005 1.82E+005 1.67E+005 1.92E+005 1.79E+005 1.79E+005 1.93E+005	

Attachment 3, Page 3 of 7

Rep	po t	for: (011 92 0	10R-01	1/20/1	c	:37 :4 7	7 AM	Page	3
	P-a)		ROI end	Peak centroid	Energy (keV)		Peak rea	Net Area Uncert.	Continuum Counts	
	44445555	2519- 2775- 2799- 3102- 3150- 3186- 3272- 3468- 3468- 3556- 3676- 3676- 3676- 3718- 3814- 3933- 3964- 4057-	2792 2815 3117 3164 3198 3289 3494 3574 3709 3737 3826 3949 3978 4079	2524.81 2783.80 2807.60 3109.21 3155.96 3189.87 3280.92 3472.21 3485.72 3565.13 3688.77 3699.41 3728.12 3820.24 3940.05 3968.99 4062.28	904.10 996.31 1004.78 1112.17 1128.82 1140.89 1173.31 1241.43 1246.24 1274.51 1318.55 1322.33 1332.56 1365.36 1408.03 1418.34 1451.56	atterne atterne a	E+004 E+005 E+003 E+003 E+002 E+006 E+002 E+003	209.44 287.31 1099.30 412.80 548.40	$\begin{array}{c} 1.62E+005\\ 1.67E+005\\ 1.55E+005\\ 1.22E+005\\ 8.15E+004\\ 6.25E+004\\ 7.53E+004\\ 1.52E+004\\ 1.52E+004\\ 1.80E+004\\ 1.99E+004\\ 2.40E+004\\ 2.32E+004\\ 2.21E+004\\ 3.13E+003\\ 2.66E+003\\ 2.11E+003\\ 1.03E+003\\ \end{array}$	
m	5	4057-	4079	4073.05	1455.40		E+002	51.63	3.97E+002	

M = First peak in a multiplet region
m = ther peak in a multiplet region
F = itted singlet

Errc. s quoted at 2.000 sigma

Attachment 3, Page 4 of 7

Repo : for: 01192010R-01 1/20/ 17:47 AM Page 4

		Nuclide Pe	eak A	is Results	
aclide ame	Id Confidenc	Energy e (keV)	Yie : (१	Activity (nCi)	Activity Uncertainty
·-3	0.000	???????????????????????????????????????	????.		
-14	0.000	???????????????????????????????????????	????		
'0-60a	0.999	1173.24*	99	6.25E+003	1.14E+002
		1332.50*	99.35	6.33E+003	1.60E+002
'C-99	0.000	???????????????????????????????????????	???? ·		
-129	0.000	???????????????????????????????????????	????		
A-137m	0.000	???????????????????????????????????????	????		
S-137a	1.000	661.65*	85	3.19E+005	6.35E+003
-234	0.000	???????????????????????????????????????	??? : ` `		
-235a	0.707	143.76			
		185.71*	57.	2.57E+002	3°.07E+001
-238	0.000	\$\$\$\$\$\$\$\$\$\$?? ???		
J-239a	0.733	129.30* 375.05	0 C.	∠.10E+005	2.22E+005
		413.71*	С.	2.63E+006	1.00E+006
M-241a	0.998	59.54*	35.	5.15E+004	3.96E+003
J-241	0.000	???????????????????????????????????????	?????		

	6 - 1	Unident	Peak	5
peak	Energy	Peak St		Peak CPS
No.	(keV)	Counts pe	ond	% Uncertainty
2	86.50	1.70c	1	106.85
3	123.04	1.48	1	1.61
5	176.31	2.845	1	59.01
m 7	187.09	2.7352	0	12.75
8 9	208.08	7.590 -	11	27.74
9	247.89	2.883	0	4.71
10	259.64	2.265	1	71.54
12	427.86	1.367	0	10.06
13	463.41	6.287	1	24.91
14	474.53	3.342	G	4.47
15	511.19	4.023	1	26.30
16	569.52	8.214	2 1	88.14
17	582.11	2.338 E	1	28.39
18	591.77	1.01935	Ū	6.06
M 19	600.63	6.482	1	4.64
m 20	604.72	5.017	1	5.64
m 21	606.71	1.9634	L.	13.38
22	625.25	1.06	1	47.94
23	635.96	4.161 .	1	13.01
1 25	692.44	3.310		3.92

Calculation No. G-CLC-A-00	230)		Page	e 21 of 39			I	Revision 0
				At	tachment 3,	Page 5 of 7			
Repo	t	for:	01192010R-01		1/20/10	:37 :47	AM	Page	5
		26 27 28 29 30	695.07 715.69 723.28 756.77 778.66		2.502 4.376 3.651 7.93 ⁻ 1.8 ⁻)2	4.83 54.17 0.84 3.35 119.87		

Calculation No.
G-CLC-A-00230

Attachment 3, Page 6 of 7

Report for: 01192010R-01 1/20/. 37:47 AM

Page 6

Peak No.	Energy (keV)	Peak Siz Counts pe	ו ond	Peak CPS % Uncertainty	
31	795.83	4.0024	1	6.85	
M 32	815.51	9.118 :7	2	14.03	
m 33	821.50	1.0628	3	13.08	
4 34	845.51	1.20	: 1 2 0	11.21	
m 35	850.61	4.250	2	27.17	
36	873.20	1.939	C	1.58	
37	892.90	8.465	2	28.91	
38	904.10	1.269.00	11	18.45	
39	996.31	1.503 -	0	1.83	
40	1004.78	2.600	10	1.06	
4 1	1112.17	6.604	2	31.89	
42	1128.82	4.105	2 2	41.19	
43	1140.89	1.65	2	85.47	
4 45	1241.43	1.25	2	29.09	
n 46	1246.24	1.0	2.0	4.75	
47	1274.51	4.24	0	0.45	
1.48	1318.55	3.4	1	2.0.6	
1 49	1322.33	7.7:9	1 1 3	1.22	
51	1365.36	4.540	3	66.12	
52	1408.03	2.5104	2 3	12.86	
53	1418.34	2.210	3	115.59	
M 54	1451.56	5.484	3	21.70	
m 55	1455.40	6.31	-	14.20	
Erro : quo	ted at:	2.00 sic			

ation No. .C-A-00230		Page 23 of 39			Revisio
		Attachment 3	3, Page 7 of 7		
Report for: (01192010R-01	1/20/1	::37: 47 AM	Page	7
		NID Sum	sults		
			- <u></u>		
Nuclide	Total Ac	tivity (nC	Concentratio	on (nCi/g)	
-3 -14 ()-60a		+/- 3.42 +/- 9.2° +/- 9.2°	4.53E-001 +/ 6.25E-002 +/ 1.65E-001 +/	- 2.43E-002	
° 2-99 -129 137m	5.36E+005 1.44E-001 3.02E+005		1.41E+001 +/- 3.79E-006 +/- 7.94E+000 +/-	- 5.49E+000 - 7.55E-008	
S-137a 234	3.19E+005 1.87E+003	+/- 6.3: +/- 7.2	8.40E+000 +/ 4.91E-002 +/	- 1.67E-001 - 1.91E-002	
235a J-238a 238		5 +/- 3.0° 5 +/- 8.25	6.77E-003 +/ < 1.24E+001 +/ 5.58E-002 +/	- 7.95E-001	
<u>1-239a</u> -240a M-241a	2.63E+006 < 4.38E+005 5.15E+004	+/- 2.8.	6.93E+001 +/ < 1.15E+001 +/ 1.36E+000 +/	- 7.42E-001	_
J-241 1-290a	1.15E+007	+/- 4.4:) +/- 0.0	3.03E+002 +/ < 0.00E+000 +/	- 1.18E+002	
rtals	1.54E+007	1	4.05E+002		i.
Erro quote	d at:	2.00 si			
	rgy line found				
n = Oth	st peak in a m er peak in a m ted singlet				
r = Nuc X = Nuc	lide is part o lide was rejec	ted by i	solution ence analysis d in weighed mea	n activity	
Revie ved by:	- AR	Br	Date:	zirdic	>
				1 26	
				94.56	
,					

Attachment 4: Canyon JCW RMDR, February 26, 2010

Radioactive Material Disposition Request/ Potential Waste Characterization Changes

INSTRUCTIONS: Complete Section I for Radioactive Material Disposition Request and/or Section II for Potential Waste Characterization Changes, then submit your request to the GCO or CTF. E&WMG will document the disposition of the request separately.

Name:	Susan	Shiouse	[Kal	hufflagge	Date:	2/26/10\$
	ADS			5-4194		

SECTION I - RADIOACTIVE MATERIAL DISPOSITION REQUEST t 5785 3/1/10

Description of Material:

2 BASS 2 F TRU (IC) Canyon Support Waste Stree ICW) Waste m

Type and condition material is in: Job Control Waste, dente bagged, good
Location of material: F003, C134
Quantity of material: One bag from each location
Any special handling concerns: <u>hadiological PPE, glores</u>
Does this material pose any personal hazards? 🔀 YES 🗌 NO
If YES, please describe: <u>Radialogical 45 mrcm/hr contact</u> , ND WB

SECTION II - POTENTIAL WASTE CHARACTERIZATION CHANGES

Will an upcoming material and/or activity have the potential to change the existing solid radioactive waste characterization as described in the Waste Certification Plan? For Example: Will the activity involve handling different samples that are not normally used in the lab/area? YES NO If YES, please describe the activity and the new samples/materials used:

Revision: 1/07 Reference: L1, Procedure 6.13

nont 5. Accan Docula	s #0865 Canvon ICW	
neni 5: Assay Kesuu	s #9865 – Canyon JCW Attachment 5, Page 1 of 4	
	Active mineral of a ge 1 of 4	
Report for 02022010	R-03 2/2/2010 1:19:33 PM	Page
	SRTC SWAF NDA 2000 Assay Report	
****	******* Sample Information ************************************	******
Sample ID: Operator:	02022010R- 93 4 Count Sequence Number: SRSDOMAIN\W6091	9865
Assay Start: Description 1: Description 2:	2/2/2010 11:19:18 AM CANYON	9
Location: Comment:		9
Matrix Type: Container Type: Weight: Container:	Not Used 55-Gallon Drum Gross: 27.0 kg Net: 4.7 kg Volume: 208.0 l Full: 100.0 %	
Density:	0.020 kg /1	
	Analysis Parameters	
Channels: Energy Calibration Response Calibrat Energy Tolerance: Nuclide confid th: Nuclide Library: C:\GENIE2K\CAMFIL Background File: C:\Canberra\nda2k	ion: 1/15/10 11:18:08 AM 1.00 keV reshold: 0.30	
	Summed Non-Segmented Results	
	reys to envir	
Background File:	\Data\00009865_CNTR0001_DCAT0001_PROC000Y.CNF \Data\00009861_CNTR0001_DCAT0001_PROC000Y.CNF	
Acquisition Start Elapsed Live Time	: 2/2/2010 11:19:18 AM : 7200.00 sec Elapsed Real Time: 7210.	58 sec
	Jon, I have attacked the vision run with this once, just in c. needed additional info. Sugar	3 min and 40

.

Revision 0

Attachment 5, Page 2 of 4

Report for: 02022010R-03

2/2/10 1:19:33 PM

Page 2

			Pe	eak Analy	sis Report			
Peak A	nalysis nalysis	s From	ormed on: Channel: hannel:	0202201 2/2/10 80 4096		РМ		
Pea No	k ROI . start	ROI end	Peak centroid	Energy (keV)	Net Peak Area	Net Area Uncert.	Continuum Counts	
1 2 M 3 m 4 m 5 6 7 8 9 M 10 m 11 12 13 14	147- 223- 239- 239- 271- 292- 342- 502- 551- 551- 821- 856- 917-	156 232 266 266 278 301 352 511 574 574 833 866 925	151.79 227.59 244.59 250.63 261.42 273.88 297.14 347.79 506.53 556.35 569.39 827.84 860.95 919.87	59.53 86.50 92.55 94.69 98.53 102.97 111.24 129.27 185.75 203.48 208.12 300.09 311.87 332.84	$\begin{array}{c} 6.20E+002\\ 9.85E+002\\ 1.51E+003\\ 3.51E+003\\ 1.02E+003\\ 1.15E+003\\ 2.80E+003\\ 7.10E+002\\ 2.86E+002\\ 5.18E+002\\ 5.36E+002\\ 2.95E+003\\ 1.60E+002\\ \end{array}$	589.74 287.44 140.40 149.81 193.86 262.71 318.09 353.07 252.54 106.63 119.10 203.56 198.44 133.16	8.75E+003 5.68E+003 5.71E+003 5.90E+003 6.26E+003 5.39E+003 6.83E+003 7.55E+003 5.68E+003 4.51E+003 4.26E+003 3.09E+003 2.42E+003 1.69E+003	
M 15 m 16 17 18 19 20 21 22 23 24 25 26	934- 934- 1032- 1081- 1142- 2132- 2189- 2359- 2790- 3560- 3977-	1094 1153 1850 2145 2198 2369 2805 3572 3984	940.68 953.50 1038.26 1088.01 1147.02 1843.50 2137.68 2193.86 2363.36 2796.76 3563.72 3980.35	340.24 344.81 374.97 392.68 413.68 661.57 766.29 786.28 846.63 1000.92 1274.01 1422.38	4.21E+002 2.85E+002 6.19E+002 2.66E+002 2.11E+004 7.05E+001 3.11E+001 8.55E+001 1.44E+002 3.31E+001 1.07E+001	94.63 87.92 164.23 164.80 144.96 296.71 45.28 31.82 35.55 43.52 26.49 12.55	2.44E+003 2.31E+003 1.93E+003 1.95E+003 1.55E+003 3.28E+002 1.61E+002 9.79E+001 9.55E+001 1.10E+002 6.09E+001 1.53E+001	
m = Ot F = Fi	her pea tted si	k in nglet	a multiple a multiple 2.000 sign	et region				

Calculation No. G-CLC-A-00230	Page 27 of 39	R	evision 0
	Attachment 5, Page 3 of 4		
Report for: 0202	22010R-03 2/2/10 1:19:33 PM	Page	3

			(keV)	(%)	land a fil	(nCi)	Uncertainty	
				and great	1.00		<u> </u>	
H-3			???????	??????				
C-14	10.	000 ????	????????	??????				
TC-9	9 0.	000 ????	????????	??????				
I-12	.9 0.	000 ????	????????	??????				
BA-1	.37m 0.	000 ????	???????	??????				
CS-1	.37a 0.	999 66	61.65*	85.10	3.8	84E+002	9.32E+000	
U-23	34 O.	000 ????	???????	??????				
U-23	5a 0.	747 14	43.76	10.96	Sec. 1			
		18	85.71*	57.20	. 6.9	94E+000	2.48E+000	
U-23	.0.	000 ????	???????	??????				
PU-2	39a 1.	000 12	29.30*	0.01	2.8	87E+005	3.80E+004	
			75.05*	0.00	3.9	97E+005	1.06E+005	
		4	13.71*	0.00	4.3	33E+005	1.09E+005	
AM-2	41a 1.		59.54*	35.90	3.6	60E+004	2.63E+003	
PU-2			2222222	222222				

	Pe	eak	Energy		Peak Size in	Peak CPS	
	1	lo.	(keV)		Counts per Second	& Uncertainty	
		2	86.50		8.6057E-002	46.39	
	М	3	92.55		1.3681E-001	14.25	
	m	4	94.69		2.1002E-001	9.91	
	m	5	98.53		4.8707E-001	5.53	
		6	102.97		1.4127E-001	25.83	
		7	111.24		1.5954E-001	27.69	
	М	10	203.48		3.9773E-002	37.23	
		11	208.12		7.1883E-002	23.01	
		12	300.09		7.4412E-002	37.99	
		13	311.87		4.0992E-001	6.72	
		14	332.84		2.2221E-002	83.23	
	М	15	340.24		5.8489E-002	22.47	
	m	16	344.81		3.9549E-002	30.88	
		18	392.68		3.6888E-002	62.05	
		21	766.29		9.7848E-003	64.27	
		22	786.28		4.3239E-003	102.22	
		23	846.63		1.1880E-002	41.56	
		24	1000.92		2.0055E-002	30.14	
		25	1274.01		4.6017E-003	79.94	
		26	1422.38		1.4850E-003	117.37	
ro	rs	quo	ted at:		2.00 sigma		

Page 28 of 39

Revision 0

Attachment 5, Page 4 of 4

Report for: 02022010R-03 2/2/10 1:19:34 PM

Page 5

NID Summary Results Nuclide Total Activity (nCi) Concentration (nCi/g) H-3 2.07E+001 +/- 5.03E-001 4.41E-003 +/- 1.07E-004 C-14 3.75E+002 +/- 6.85E+001 7.97E-002 +/- 1.46E-002 < 2.73E-004 +/- 7.79E-006 CO-60a < 1.28E+000 +/- 3.66E-002 TC-99 8.44E+004 +/- 1.54E+004 1.80E+001 +/- 3.29E+000 3.69E-008 +/- 8.96E-010 I-129 1.74E-004 +/- 4.21E-006 BA-137m 3.64E+002 +/- 8.82E+000 7.74E-002 +/- 1.88E-003 3.84E+002 +/- 9.32E+000 CS-137a 8.18E-002 +/- 1.98E-003 U-234 2.94E+002 +/- 5.38E+001 6.26E-002 +/- 1.14E-002 6.94E+000 +/- 2.48E+000 1.48E-003 +/- 5.28E-004 U-235a < 7.94E+004 +/- 4.56E+003 3.34E+002 +/- 6.11E+001 PU-238a < 1.69E+001 +/- 9.69E-001 U-238 7.11E-002 +/- 1.30E-002 PU-239a 4.15E+005 +/- 7.59E+004 8.83E+001 +/- 1.61E+001 < 6.36E+004 +/- 3.68E+003 PU-240a < 1.35E+001 +/- 7.83E-001 3.60E+004 +/- 2.63E+003 7.65E+000 +/- 5.60E-001 AM-241a 3.86E+002 +/- 7.07E+001 PU-241 1.81E+006 +/- 3.32E+005 < 0.00E+000 +/- 0.00E+000 PH-290a < 0.00E+000 +/- 0.00E+000 Totals 2.35E+006 5.00E+002 Errors quoted at: 2.00 sigma Symbols used: * = Energy line found in the spectrum M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet ? = Nuclide is part of undetermined solution X = Nuclide was rejected by interference analysis @ = Nuclide has energy lines not used in weighed mean activity < = MDAReviewed by: Date: Ant

Note: Page 4 of the assay file contained no information and therefore is not reproduced above.

Attachment 6: Hulls JCW Activity Calculations

Attachment 6, Page 1 of 2

A. Process Knowledge

Nuclide	Ave Conc (Ref. 3)	Units	Scalor Nuclide	Scalor Ratio (Ci%)
Co-60	518	GBq/m ³	Cs-137	0.76%
Sr-90	38900	GBq/m ³	Cs-137	57.37%
Cs-137	67800	GBq/m ³	Cs-137	100%
Pu-238	989	kBq/g	Pu-239	277.81%
Pu-239/240	356	kBq/g	Pu-239	100%
Am-241	161	kBq/g	Pu-239	45.22%

B. Assay Results – Summary

Assay File	9843	9796	N/A	A
Description Waste Mass (kg)	Canyon Waste + Rudisill 2, 3,4 38.0	Canyon Waste + Rudisill 1 49.2	Total: Canyon 1, 2, 2 87.	3, 4
Nuclide	nCi	nCi	nCi	Notes
Co-60	6.28E+03	3.49E+03	9.77E+03	No DL
Cs-137	3.19E+05	6.64E+05	9.83E+05	No DL
U-235	2.57E+02	< 3.41E+01	2.91E+02	1 DL
Pu-238	< 4.70E+05	< 4.97E+05	9.67E+05	Both DL
Pu-239	2.63E+06	8.16E+05	3.45E+06	No DL
Pu-240	< 4.38E+05	< 4.64E+05	9.02E+05	Both DL
Am-241	5.15E+04	1.26E+05	1.78E+05	No DL
TOTAL	3.92E+06	2.57E+06	6.49E+06	
TOTAL (w/o DL)	3.01E+06	1.61E+06	4.62E+06	
TRU nCi/g	94.5	38.7	63.0	
TRU nCi/g (w/o DL)	70.6	19.1	41.6	

Notes:

1. The above table shows measured nuclides only. No scaled nuclides are included; see assay files in Attachments 2 and 3 for scaled and measured nuclides.

2. Detection Level (DL) values are shown as "<" values.

3. TRU concentration (nCi/g) is calculated using the TRU nuclides (i.e., Pu-238, Pu-239, Pu-240, and Am-241) and waste mass, per Equation 1.

Calculation No. G-CLC-A-00230 Page 30 of 39

Revision 0

Attachment	6,	Page	2	of	2	
------------	----	------	---	----	---	--

C. Calculated Nuclides and Final Activities

	actives and	Final Activities						
PK Nuclide	Scalor Nuclide	Scalor Ratio (Ci%)	Calculated nCi	Total Assay Value (nCi)	Comparison	Selected nCi	Ci%	Final nCi
Co-60	Cs-137	0.76%	7.51E+03	9.77E+03	Assay Higher	9.77E+03	0.059%	0.00E+00
Sr-90	Cs-137	57.37%	5.64E+05		Assay Not Available	5.64E+05	3.41%	5.64E+05
Cs-137	Cs-137	100%	9.83E+05	9.83E+05	Assay Value Used	9.83E+05	5.95%	9.83E+05
Pu-238	Pu-239	277.81%	9.57E+06	9.67E+05	Assay DL Lower	9.67E+05	5.85%	9.67E+05
Pu-239/240	Pu-239	100%	3.45E+06	3.45E+06	Assay Value Used	3.45E+06	20.84%	3.45E+06
Am-241	Pu-239	45.22%	1.56E+06	1.78E+05	Assay Lower	1.78E+05	1.07%	1.78E+05
Other Measur	ed Assay Iso	topes (see abov	ve)					
U-235				2.91E+02	No PK value	2.91E+02	0.0018%	2.91E+02
I-129 scaled to) Cs-137 (Ref	f . 7)						
I-129	Cs-137	0.0000567%	5.57E-01		Assay Not Available	5.57E-01	0.0000034%	5.57E-01
Plutonium Iso	topes scaled	to Pu-239 (Ref.	. 10)					
Pu-240	Pu-239	22.4%	7.72E+05	9.02E+05	Assay DL Higher – Used Scaled	7.72E+05	4.67%	7.72E+05
Pu-241	Pu-239	235%	8.10E+06		Assay Not Available	8.10E+06	48.98%	8.10E+06
Pu-242	Pu-239	0.00177%	6.10E+01		Assay Not Available	6.10E+01	0.00037%	0.00E+00
Uranium Isoto	opes scaled to	o U-235 (Ref. 1	1)					
U-234	U-235	1458%	4.24E+03		Assay Not Available	4.24E+03	0.026%	4.24E+03
U-236	U-235	22.8%	6.64E+01		Assay Not Available	6.64E+01	0.00040%	0.00E+00
U-238	U-235	2054%	5.98E+03		Assay Not Available	5.98E+03	0.036%	0.00E+00
Daughter Nuc	lides (Ref. 9)							
Ba-137m	Cs-137	94.60%	9.30E+05		Assay Not Available	9.30E+05	5.62%	9.30E+05
Y-90	Sr-90	100.00%	5.64E+05		Assay Not Available	5.64E+05	3.41%	5.64E+05
Pa-234m	U-238	100.00%	5.98E+03		Assay Not Available	5.98E+03	0.036%	0.00E+00
Th-234	U-238	100.00%	5.98E+03		Assay Not Available	5.98E+03	0.036%	0.00E+00
Th-231	U-235	100.00%	2.91E+02		Assay Not Available	2.91E+02	0.0018%	0.00E+00
TOTAL						1.65E+07	100%	1.65E+07

Attachment 7: Canyon JCW Activity Calculations

Assay File	9865
Description	Canyon
Waste Mass (kg)	4.7
Nuclide	nCi
Co-60	< 1.28E+00
Cs-137	3.84E+02
U-235	6.94E+00
Pu-238	< 7.94E+04
Pu-239	4.15E+05
Pu-240	< 6.36E+04
Am-241	3.60E+04
TOTAL	5.94E+05
TOTAL (w/o DL)	4.51E+05
TRU nCi/g	126.4
TRU nCi/g (w/o DL)	96.0

Notes:

- 1. The above table shows measured nuclides only. No scaled nuclides are included; see assay file in Attachment 5 for scaled and measured nuclides.
- 2. Detection Level (DL) values are shown as "<" values.
- 3. TRU concentration (nCi/g) is calculated using the TRU nuclides (i.e., Pu-238, Pu-239, Pu-240, and Am-241) and waste mass, per Equation 1.

		SRNLJCW 55- gal drum (Ci)				
Nuclide	Ci	[Ref. 7]	Comparison	Revised Ci	Ci%	Final Ci
			Same (DL vs. 0) – Use			
Co-60	1.28E-09	0	SRNLJCW			
			SRNLJCW 2 OM Higher – Use			
Cs-137	3.84E-07	7.02E-05	SRNLJCW			
U-235	6.94E-09	7.20E-09	Same OM – Use SRNLJCW			
			Assay DL same OM – Use			
Pu-238	7.94E-05	2.24E-05	Assay DL	7.94E-05	4.97%	7.94E-05
			Assay 1 OM Higher – Use			
Pu-239	4.15E-04	3.67E-05	Assay	4.15E-04	25.96%	4.15E-04
			Same (DL vs. 0) – Scale to Pu-			
Pu-240	6.36E-05	0	239 Assay [Ref. 10]	9.30E-05	5.82%	9.30E-05
Am-241	3.60E-05	4.34E-05	Same OM – Use Assay	3.60E-05	2.25%	3.60E-05
Pu-241		1.30E-04	Scale to Pu-239 Assay [Ref. 10]	9.75E-04	61.01%	9.75E-04
Pu-242		0	Scale to Pu-239 Assay [Ref. 10]	7.35E-09	0.00046%	0.00E+00
TOTAL				1.60E-03	100%	1.60E-03

B. Calculated Nuclides and Final Activities

Notes:

1. Assay values (nCi) shown in Table A above are converted to Ci values in Table B (i.e., 1 E +09 nCi per 1 Ci).

2. The "SRNLJCW 55-gal drum (Ci)" column represents the quantity expected of each assayed isotope based on Reference 7. Non-assay isotopes in the SRNLJCW LLW stream are not shown above.

3. Although the Am-241 assay value is the same order of magnitude (OM) as the "SRNLJCW" value, it is included to provide a more bounding TRU concentration calculation.

Attachment 8: Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package – WITS Input Attachment 8, Page 1 of 3

For:		RUI	DISILL					tracked in WIT				waste at EATRU is to Low Level Waste.	racked in WITS as L	LW)
General I	nfo				Ŀ	Veight In		e concentration		Container In		Low Level Waste.		
Package		tification	Parent Contain	er	Πŕ	Gross V		ross Weight	пÈ	Container	<i>ij0</i> .			1
Activity (Date	Parent Contain			(kg		(lb)		Type Code	Descriptio	n		
8.9405E-	02					4,718	8.05	10,401.52		468	SEA LAND (CONTAINER - 20 FT		
Dose Rate (mrlhr)		Limit	Deviation Number	r	_	Waste V (kg	-	/aste Weight (lb)		Pkg Tare Weight (kg)	Pkg Tare Weight (Ib)	Container Type Tare Weight (kg)	Container Type Tare Weight (Ib)	
	_					2,060	0.00	4,541.52		2,658.05	5,860.00	2,658.05	5,860.00	
			Generator Li	mit Chec	k Facility	/ Gene	erator Limit (Check Locatior		Cntnr Vol (m3)	Cntnr Vol (ft3)	Volume % Full	Waste Vol (m3)	
hipment	History:		E	AV			ETREM	NCH2		33.2158	1,173.0000	100.00	33.2158	
Shipmer	nt ID	Date Shipp	ed Date Red	bevie	0	2				leceiver				i
Fissile G		TRU	Isotope	LLW Equiv	Sender Pu239 valent A		Fissile G Equivale	ram ent (Pu239):		eat Load:		TRU Pu239 Equivalent Activ		
Equivaler 9.168	<i>nt (U235)</i> 89E-01	TRU): Conc		LLW Equiv (ci) (P	Pu239 valent A	ctivity	Equivale 5.80 TRU Alp				(BTU/Hr) (Watts)	Equivalent Active (ci) (PEC): 2.3978E-02		; (/) : E-02
Equivaler 9.168	nt (U235) B9E-01 ulations base	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P	Pu239 valent A PEC):	ctivity	Equivale 5.80 TRU Alp	ent (Pu239): 16E-01 ha Act (ci):		eat Load: 3.0724E-03	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu	nt (U235) B9E-01 ulations base	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P	Pu239 valent A PEC): 2.5438E-0	ctivity	Equivale 5.80 TRU Alp	<i>int (Pu239):</i> 16E-01 <i>ha Act (ci):</i> 44E-02		eat Load: 3.0724E-03	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu Waste Sti	nt (U235) B9E-01 ulations base reams: D	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Versi	Pu239 valent A PEC): 2.5438E-0	ctivity	Equivale 5.80 TRU Alp 2.23 Descrip	<i>int (Pu239):</i> 16E-01 <i>ha Act (ci):</i> 44E-02	He	2.0724E-03 9.0042E-04	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu Waste Str Stream II	nt (U235) 89E-01 alations base reams: D W	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 sion	ctivity 2	Equivale	<i>nt (Pu239):</i> 16E-01 <i>ha Act (ci):</i> 44E-02	He TC LA	2.0724E-03 9.0042E-04	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu Waste Stri Stream IE 00524-LL	nt (U235) B9E-01 Inlations base Treams: D W N-LLW	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 sion 2 0	ctivity 2 R R	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA	nt (Pu239): 16E-01 ha Act (ci): 44E-02 btion STE FROM SR	He TC LA	eat Load: 3.0724E-03 9.0042E-04	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu Waste Str Stream IE 00524-LLU SRNLJCV	nt (U235) 89E-01 ulations base reams: D W W N-LLW Owner:	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Vers	Pu239 palent A PEC): 2.5438E-0 sion 2 0 Curr	ctivity 2 R R	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAB COUTINE LAB	Int (Pu239): 16E-01 tha Act (ci): 44E-02 otion STE FROM SR B WORK AND C	He TC LA	eat Load: 3.0724E-03 9.0042E-04	(BTU/Hr)	Equivalent Active (ci) (PEC): 2.3978E-02	ity Equivalent Curies (DE	<i>C():</i> E-02
Equivaler 9.168 These calcu Waste Str Stream IE 00524-LL SRNLJCV Current (773-A SR	nt (U235) B9E-01 alations base freams: D W W-LLW Owner: NL	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Vers	Pu239 palent A PEC): 2.5438E-0 sion 2 0 Curr Fa	ctivity 2 R R rent Loc	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAB COUTINE LAB	nt (Pu239): 16E-01 ha Act (ci): 44E-02 bilion ASTE FROM SR B WORK AND C *(of overpack, i	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	; (/) : E-02
Equivaler 9.168 These calcu Waste Str Stream IE 00524-LL SRNLJCV Current (773-A SR	nt (U235) 89E-01 Ilations base reams: D W W N-LLW Owner: NL Contents:	TRU): Conc	Isotope (nci/g): 1.0847E+01	LLW Equiv (ci) (P 2 Vers	Pu239 palent A PEC): 2.5438E-0 sion 2 0 Curr Fa	ctivity 2 R R rent Loc cility RNL	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAB COUTINE LAB	nt (Pu239): 16E-01 ha Act (ci): 44E-02 bilion ASTE FROM SR B WORK AND C *(of overpack, i	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr) (Watts)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	; (/) : E-02
Equivaled 9.168 These calcu Waste Strie Stream IE 00524-LL SRNLJCV Current (773-A SRN Nuclide (nt (U235) 89E-01 Ilations base reams: D W W N-LLW Owner: NL Contents: Ilde 241	TRU): Conc	Isotope (nci/g): 1.0847E+01 ogram definitions.	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 510n 2 0 Curr Fa St	ctivity 2 R R rent Loc cility RNL	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR	the theorem of the second seco	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr) (Watts)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	; (/) : E-02
Equivalex 9.168 These calcu Waste Stri Stream IE 00524-LLI SRNLJCV Current O 773-A SRI Vuclide O Nucli AM AM	nt (U235) 89E-01 Ilations base reams: D W W N-LLW Owner: NL Contents: Ilde 241 243	TRU): Conc. d on LLW Pr	Isotope (nci/g): 1.0847E+01 ogram definitions. Activity (ci) 7.086570E-03 2.901593E-05	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 510n 2 0 Curr Fa St	ctivity 2 R R rent Loc cility RNL	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR	the theorem of the second seco	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr) (Watts)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	<i>C():</i> E-02
Equivalen 9.168 These calcu Waste Stri Stream IE 00524-LLI SRNLJCV Current O 773-A SRI Vuclide O Nucli AM AM BA	nt (U235) 89E-01 Ilations base reams: D W W N-LLW Owner: NL Contents: Ilde 241 243 137	TRU): Conc	Isotope (nci/g): 1.0847E+01 ogram definitions. Activity (ci) 7.086570E-03 2.901593E-05 1.148125E-02	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 510n 2 0 Curr Fa St	ctivity 2 R R rent Loc cility RNL	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR	the theorem of the second seco	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr) (Watts)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	; (/) : E-02
Equivalen 9.168 These calcu Waste Stri Stream IE 00524-LLI SRNLJCV Current O 773-A SRI Vuclide C Nucl AM AM	nt (U235) 89E-01 Ilations base reams: D W W N-LLW Owner: NL Contents: Ilde 241 243	TRU): Conc. d on LLW Pr	Isotope (nci/g): 1.0847E+01 ogram definitions. Activity (ci) 7.086570E-03 2.901593E-05	LLW Equiv (ci) (P 2 Vers	Pu239 valent A PEC): 2.5438E-0 510n 2 0 Curr Fa St	ctivity 2 R R rent Loc cility RNL	Equivale 5.80 TRU Alp 2.23 Descrip COUTINE WA COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR COUTINE LAR	the theorem of the second seco	He TC LA DPS	2at Load: 3.0724E-03 9.0042E-04 MBS	(BTU/Hr) (Watts)	Equivalent Activ (ci) (PEC): 2.3978E-02 These calculations bas	ity Equivalent Curies (DE 2.2807E red on TRU Program de	; (/) : E-02

Page 1 of 3

Attachment 8, Page 2 of 3

Waste Package Data Report For: RUDISILL

Nucli	de	Activity (ci)
н	3	3.906814E-03
I.	129	6.859232E-09
NP	237	7.842145E-05
PU	238	4.600353E-03
PU	239	9.684575E-03
PU	240	8.650000E-04
PU	241	2.960216E-02
SR	90	3.494110E-03
тс	99	1.611204E-04
U	233	3.678679E-05
U	234	4.330814E-05
U	235	1.431676E-06
Y	90	3.494110E-03
		8.9405E-02

Waste Package Storage Location History:

Date	/Time of Movement*	Facility	Location U	nit					
3/2	9/2010 12:26:19 PM	SRNL	None No	one					
			red since implementation of WITS v3. prrespond to a shipment record in the						
	WITS data only and DO NO		nents of the package. For inside pack			nents of the ove	rpack.	F	impiliations of
	WITS data only and DO NO					nents of the ove		F	Activity (ci)
Vaste Cuts:	WITS data only and DO NO.		nents of the package. For inside pack	ages this section	n does not show moven	nents of the ove	rpack Contamination Level		

Attachment 8, Page 3 of 3

Waste Package Data Report For: RUDISILL

Cut ID	By Package Isotope Activitie Waste Stream ID	es: Version	Iso	tope	Activity (ci)
RUDISILL	00524-LLW	2	5544.0		
			AM	241	2.1400E-04
			BA	137 M	9.3000E-04
			CS	137	9.8300E-04
			1	129	5.5700E-10
			PU	238	1.0500E-03
			PU	239	3.8600E-03
			PU	240	8.6500E-04
			PU	241	9.0700E-03
			SR	90	5.6400E-04
			U	234	4.2400E-06
			U	235	2.9100E-07
			Y	90	5.6400E-04
			Total Activit	y (ci):	1.8105E-02

Attachment 9: Non-Routine Waste Cut and Routine "SRNLJCW" (Minimum Mass) LLW Test Package – WITS Limit Checks Attachment 9, Page 1 of 4

Manifest	Number					Destination	Destination
Package	Number		Deviatio	on Number		Facility	Location
RUDISII	LL					EAV	ETRENCH2
Limit ID	Limit Amount	Inventory Contribution	Package Contribution	LA - (IC + PC)	Limit Units	Limit Description	PASSED FAILED
62176	5.0000E+01	0.0000E+00	9.1689E-01	4.9083E+01	CI	ET- 50 FGE PACKAGE LIMIT	
62177	1.0000E-04	0.0000E+00	1.0847E-05	8.9153E-05	CI/KG	ENGINEERED TRENCH - TRU PACKAGE	
62205	1.5000E+01	0.0000E+00	8.1169E-01	1.4188E+01	CI	DOT 15-GRAM FISSILE - ETRENCI	H
64126	1.0000E-02	0.0000E+00	1.6629E-06	9.9983E-03	CI/M3	MAY BE GTCC / WIR - IF FAILED CALL HLWD LEAD	
64127	9.9000E-01	0.0000E+00	1.2585E-01	8.6415E-01	CI/KG	MAY BE GTCC / WIR - IF FAILED CALL HLWD LEAD	
64128	1.0000E+00	0.0000E+00	9.4900E-08	1.0000E+00	CI/M3	MAY BE GTCC / WIR - IF FAILED CALL HLWD LEAD	
65794	4.0000E+00	0.0000E+00	2.5438E-02	3.9746E+00	CI	ET2 Package Limit- 4 PEC	
66314	5.0000E-02	0.0000E+00	2.0968E-03	4.7903E-02	CI	5% Pkg Screening ETXPA-BG1- If Fa Call SWE	iiled
66315	5.0000E-02	0.0000E+00	2.5648E-03	4.7435E-02	CI	5% Pkg Screening ETXPA-BG2- If Fa Call SWE	illed
66316	5.0000E-02	0.0000E+00	5.6946E-05	4.9943E-02	CI	5% Pkg Screening ETXPA-BG3- If Fa Call SWE	illed

Generator Limit Check Report for the Destination Facility

3/30/2010 7:50:50 AM

Attachment 9	Page	2 of	4
--------------	------	------	---

Limit ID	Limit Amount	Inventory Contribution	Package Contribution	LA - (IC + PC)	Limit Units	Limit Description	PASSED/ FAILED
66317	5.0000E-02	0.0000E+00	4.3102E-04	4.9569E-02	CI	5% Pkg Screening ETXPA-Alpha1- If Failed Call SWE	
66318	5.0000E-02	0.0000E+00	3.5247E-04	4.9648E-02	CI	5% Pkg Screening ETXPA-Alpha2- If Failed Call SWE	
66319	5.0000E-02	0.0000E+00	3.0556E-04	4.9694E-02	CI	5% Pkg Screening ETXPA-Alpha3-If Failed Call SWE	
66320	5.0000E-02	0.0000E+00	1.2481E-07	5.0000E-02	CI	5% Pkg Screening ETXPA-Radium1- If Failed Call SWE	
66321	5.0000E-02	0.0000E+00	3.7824E-07	5.0000E-02	CI	5% Pkg Screening ETXPA-Radium2- If Failed Call SWE	
66322	5.0000E-02	0.0000E+00	4.1814E-07	5.0000E-02	CI	5% Pkg Screening ETXPA-Radium3- If Failed Call SWE	
66323	5.0000E-02	0.0000E+00	2.0680E-13	5.0000E-02	CI	5% Pkg Screening ETXPA-Uranium- If Failed Call SWE	
66324	5.0000E-02	0.0000E+00	1.1974E-03	4.8803E-02	CI	5% Pkg Screening ETXPA-AP1- If Failed Call SWE	
66325	5.0000E-02	0.0000E+00	1.3739E-03	4.8626E-02	CI	5% Pkg Screening ETXPA-AP2- If Failed Call SWE	
66326	5.0000E-02	0.0000E+00	1.1368E-03	4.8863E-02	CI	5% Pkg Screening ETXPA-AP3- If Failed Call SWE	
66327	5.0000E-02	0.0000E+00	9.3681E-07	4.9999E-02	CI	5% Pkg Screening ETXPA-Res- If Failed Call SWE	
66328	5.0000E-02	0.0000E+00	1.7464E-05	4.9983E-02	CI	5% Pkg Screening ETXPA-Drill- If Failed Call SWE	

3/30/2010 7:50:51 AM

2 of total 4

_

Attachment 9, Page 3 of 4

Limit ID	Limit Amount	Inventory Contribution	Package Contribution	LA - (IC + PC)	Limit Units	Limit Description	PASSED/ FAILED
66329	5.0000E-02	0.0000E+00	4.0233E-10	5.0000E-02	CI	5% Pkg Screening ETXPA-Air- If Failed Call SWE	
66330	5.0000E-02	0.0000E+00	3.9829E-14	5.0000E-02	CI	5% Pkg Screening ETXPA-Radon- If Failed Call SWE	
66348	5.0000E-03	0.0000E+00	2.0968E-03	2.9032E-03	CI	0.5% Pkg Screening ETXPA-BG1- If Failed Call SWE	
66349	5.0000E-03	0.0000E+00	2.5648E-03	2.4352E-03	CI	0.5% Pkg Screening ETXPA-BG2- If Failed Call SWE	
66350	5.0000E-03	0.0000E+00	5.6946E-05	4.9431E-03	CI	0.5% Pkg Screening ETXPA-BG3- If Failed Call SWE	
66351	5.0000E-03	0.0000E+00	4.3102E-04	4.5690E-03	CI	0.5% Pkg Screening ETXPA-Alpha1- If Failed Call SW	
66352	5.0000E-03	0.0000E+00	3.5247E-04	4.6475E-03	CI	0.5% Pkg Screening ETXPA-Alpha2- If Failed Call SW	
66353	5.0000E-03	0.0000E+00	3.0556E-04	4.6944E-03	CI	0.5% Pkg Screening ETXPA-Alpha3- If Failed Call SW	
66354	5.0000E-03	0.0000E+00	1.2481E-07	4.9999E-03	CI	0.5% Pkg Screening ETXPA-Radium1- If Failed Call S	
66355	5.0000E-03	0.0000E+00	3.7824E-07	4.9996E-03	CI	0.5% Pkg Screening ETXPA-Radium2- If Failed Call S	
66356	5.0000E-03	0.0000E+00	4.1814E-07	4.9996E-03	CI	0.5% Pkg Screening ETXPA-Radium3- If Failed Call S	
66357	5.0000E-03	0.0000E+00	2.0680E-13	5.0000E-03	CI	0.5% Pkg Screening ETXPA-Uranium- If Failed Call S	

3/30/2010 7:50:51 AM

3 of total 4

Attachment 9,	Page 4	of 4
---------------	--------	------

Limit ID	Limit Amount	Inventory Contribution	Package Contribution	LA - (IC + PC)	Limit Units	Limit Description	PASSED/ FAILED
66358	5.0000E-03	0.0000E+00	1.1974E-03	3.8026E-03	CI	0.5% Pkg Screening ETXPA-AP1- If Failed Call SWE	
66359	5.0000E-03	0.0000E+00	1.3739E-03	3.6261E-03	CI	0.5% Pkg Screening ETXPA-AP2- If Failed Call SWE	
66360	5.0000E-03	0.0000E+00	1.1368E-03	3.8632E-03	CI	0.5% Pkg Screening ETXPA-AP3- If Failed Call SWE	
66361	5.0000E-03	0.0000E+00	9.3681E-07	4.9991E-03	CI	0.5% Pkg Screening ETXPA-Res- If Failed Call SWE	
66362	5.0000E-03	0.0000E+00	1.7464E-05	4.9825E-03	CI	0.5% Pkg Screening ETXPA-Drill- If Failed Call SWE	
66363	5.0000E-03	0.0000E+00	4.0233E-10	5.0000E-03	CI	0.5% Pkg Screening ETXPA-Air- If Failed Call SWE	
66364	5.0000E-03	0.0000E+00	3.9829E-14	5.0000E-03	CI	0.5% Pkg Screening ETXPA-Radon- If Failed Call SWE	
67224	1.0000E+00	0.0000E+00	9.1689E-01	8.3106E-02	CI	FAIL = FISSILE RESTRICTIONS MAY APPLY- 1 FGE	

3/30/2010 7:50:51 AM

4 of total 4

Nuclide	Total Non- Routine (Ci)	HC 2 Threshold (Ci) [Ref. 8]	Non-Routine HC2 SOF
I-129	5.57E-10	4.3E+05	1.30E-15
Ba-137m	9.30E-04	NA	NA
Cs-137	9.83E-04	8.9E+04	1.10E-08
U-234	4.24E-06	2.2E+02	1.93E-08
U-235	2.91E-07	1.5E-03	1.90E-04
Pu-238	1.05E-03	6.2E+01	1.69E-05
Pu-239	3.86E-03	2.8E+01	1.36E-04
Pu-240	8.65E-04	5.5E+01	1.57E-05
Am-241	2.14E-04	5.5E+01	3.88E-06
Pu-241	9.07E-03	2.9E+03	3.13E-06
Sr-90	5.64E-04	2.2E+04	2.56E-08
Y-90	5.64E-04	4.3E+05	1.31E-09
TOTAL	1.81E-02		3.66E-04

Attachment 10: HC2 SOF Calculation